

1

Graph Spectral Processing and Analysis for 3D Point Clouds and Beyond

Wei HU Assistant Professor Peking University

June, 2023

- Introduction to geometric data processing and analysis over graphs
- Basics in Graph Signal Processing and Graph-based Machine Learning
- Point cloud **representation** from feature graph learning
- Point cloud **reconstruction** from graph spectral prior
- Point cloud **analysis** in the graph spectral domain
- Summary and future works

- Introduction to geometric data processing and analysis over graphs
- Basics in Graph Signal Processing and Graph-based Machine Learning
- Point cloud **representation** from feature graph learning
- Point cloud **reconstruction** from graph spectral prior
- Point cloud **analysis** in the graph spectral domain
- Summary and future works

Introduction to geometric data processing and analysis

Geometric Data

• Describe the geometry of the 3D world

3D Mesh

2D depth map 3D Point Cloud 3D Mesh 4D Dynamic Point Cloud time

• Acquired by depth sensing, laser scanning or image processing

Microsoft Kinect Intel RealSense Velodyne LiDAR LiDAR scanner of Apple iPad Pro 44

Introduction to geometric data processing and analysis

Geometric Data

• Central to a wide range of applications

Navigation in Autonomous Driving

Augmented/Virtual Reality

Heritage Protection **Free-viewpoint Video**

Introduction to geometric data processing and analysis

Tasks

• **Processing**: denoising, inpainting, super-resolution, resampling, etc.

Point Cloud Denoising

Point Cloud Inpainting

• **Analysis**: classification, segmentation, detection, etc.

Point Cloud Segmentation

Truck? Car?

Point Cloud Detection Point Cloud Classification

Challenges

① Unlike images, a wide range of geometric data have **irregular sampling patterns**

Traditional image/video processing/analysis methods: assume sampling patterns over *regular* grids

- ② Real-world geometric data often suffer from noise, missing data, ….
	- Require **Robustness**
- ③ Model **Interpretability** of geometric deep learning for analysis tasks

Paris-rue-Madame

Non-Graph representations of irregular geometric data

• Quantization-based representations

Quantize onto regular voxel grids Project onto multiple viewpoints Signed Distance Function

Implicit functions

- Amenable to existing methods for Euclidean data
- Often deficient in capturing the geometric *structure* explicitly
- ³ Sometimes inaccurate
- [®] Sometimes redundant

• Graphs provide *structure-adaptive*, *accurate*, and *compact* representations for geometric data

Background in GSP & GNN

Graph Signal Processing (GSP)

- Extend classical signal processing to the graph domain
- Principled mathematical models
- **Theoretical** guarantee
- **Tools: Graph filter**, Graph Fourier Transform, graph wavelets, etc.

Graph Neural Network (GNN)

- Extend deep learning techniques to the graph domain
- Data-driven models
- **Empirical** performance
- **Tools: Graph convolution**, graph attention, graph pooling, etc.
- **Interpretability** (e.g., interpretation of graph convolution)
- **Introduce GSP-based domain knowledge into GNNs**

Representative works leveraging GSP/GNNs to process or analyze geometric data.

- Introduction to geometric data processing and analysis over graphs
- Basics in Graph Signal Processing and Graph-based Machine Learning
- Point cloud **representation** from feature graph learning
- Point cloud **reconstruction** from graph spectral prior
- Point cloud **analysis** in the graph spectral domain
- Summary and future works

- Graph: vertices (nodes) connected via some edges (links)
- Graph Signal: set of scalar/vector values defined on the vertices.

- Adjacency matrix: A
	- $a_{i,j}$: edge weight for the edge (v_i, v_j)
	- Describe the similarity / correlation between nodes
	- Undirected graph: $a_{i,j} = a_{j,i}$
- Degree matrix: D

$$
d_{i,i} = \sum_{j=1}^{N} a_{i,j}
$$

- Combinatorial Graph Laplacian matrix
	- $L = D A$
	- L is symmetric
	- When operating L on a graph signal x , it captures the variation in the signal

$$
(\mathbf{L}\mathbf{x})(i) = \sum_{j \in \mathcal{N}_i} a_{i,j} (x_i - x_j)
$$

• Total variation

$$
\mathbf{x}^T \mathbf{L} \mathbf{x} = \sum_{i \sim j} a_{i,j} (x_i - x_j)^2
$$

- Graph Laplacian Regularizer

- The graph Laplacian $\mathbf{L} \in \mathcal{R}^{N \times N}$ is real and symmetric: $\mathbf{L} \psi_l = \lambda_l \psi_l$
	- a set of real eigenvalues $\{\lambda_l\}_{l=0}^{N-1}$ graph frequency
	- a complete set of orthonormal eigenvectors $\{\psi_l\}_{l=0}^{N-1}$
- The eigenvectors $\{\psi_l\}_{l=0}^{N-1}$ define the GFT basis:

$$
\mathbf{\Phi} = \begin{bmatrix} | & & | \\ \psi_0 & \cdots & \psi_{N-1} \\ | & & | \end{bmatrix}
$$

• For any signal $\mathbf{x} \in \mathcal{R}^N$ residing on the nodes of \mathcal{G} , its GFT $\hat{\mathbf{x}} \in \mathcal{R}^N$ is defined as

$$
\hat{\mathbf{x}}(l) = \langle \psi_l, \mathbf{x} \rangle, l = 0, 1, ..., N - 1 \qquad (\hat{\mathbf{x}} = \mathbf{\Phi}^T \mathbf{x})
$$

GFT coefficients GFT basis graph signal

- Combinatorial Graph Laplacian matrix
	- $L = D A$
	- L is symmetric
	- When operating L on a graph signal x , it captures the variation in the signal

$$
(\mathbf{L}\mathbf{x})(i) = \sum_{j \in \mathcal{N}_i} a_{i,j} (x_i - x_j)
$$

• Total variation

$$
\mathbf{x}^T \mathbf{L} \mathbf{x} = \sum_{i \sim j} a_{i,j} (x_i - x_j)^2
$$

$$
= \sum_{k \sim k} \lambda_k \hat{\mathbf{x}}_k^2
$$

- Graph Laplacian Regularizer
- Spectral interpretation

Why Graph Fourier Transform

• Offer compact transform domain representation

- Reason: the graph adaptively captures the correlation in the graph signal
- \approx KLT for a family of statistical models

Wei Hu, Gene Cheung, Antonio Ortega, Oscar C. Au, "Multi-resolution Graph Fourier Transform for Compression of Piecewise Smooth Images," *IEEE Transactions on Image Processing*, vol. 24, no. 1, pp. 419-433, January 2015.

Graph Neural Networks

Bronstein MM, Bruna J, LeCun Y, Szlam A, Vandergheynst P., "Geometric deep learning: going beyond Euclidean Data," *IEEE Signal Processing Magazine*. 2017 Jul 11;34(4):18-42.

Euclidean

Spatial domain

$$
(f \star g)(x) = \int_{-\pi}^{\pi} f(x')g(x - x')dx'
$$

Spectral domain

$$
\widehat{(f \star g)}(\omega) = \widehat{f}(\omega) \cdot \widehat{g}(\omega)
$$

'Convolution Theorem'

Non-Euclidean

Euclidean

Spatial domain

$$
(f \star g)(x) = \int_{-\pi}^{\pi} f(x')g(x - x')dx'
$$

Non-Euclidean

$$
f'_i = \Box_{i':(i,i') \in \varepsilon} h_{\Theta}(f_i, f_{i'})
$$

Spectral domain

$$
\widehat{(f \star g)}(\omega) = \widehat{f}(\omega) \cdot \widehat{g}(\omega)
$$

'Convolution Theorem'

$$
\widehat{f\star g}=(\Phi^\top g)\circ(\Phi^\top f)
$$

Euclidean

Spatial domain

$$
(f \star g)(x) = \int_{-\pi}^{\pi} f(x')g(x - x')dx'
$$

Spectral domain

$$
\widehat{(f \star g)}(\omega) = \widehat{f}(\omega) \cdot \widehat{g}(\omega)
$$

'Convolution Theorem'

Non-Euclidean

$$
f'_i = \Box_{i':(i,i') \in \varepsilon} h_{\Theta}(f_i, f_{i'})
$$

 $\hat{\alpha}$

 $\mathbf U$

 \star f'

 $\widehat{\mathbf{f} \star \mathbf{g}} = (\boldsymbol{\Phi}^\top \mathbf{g}) \circ (\boldsymbol{\Phi}^\top \mathbf{f})$

 α

 \mathbf{f} $\frac{\mathbf{U}^\top}{\sqrt{2\pi}}$

Spatial graph filtering

Spectral graph filtering

23

- Introduction to geometric data processing and analysis over graphs
- Basics in Graph Signal Processing and Graph-based Machine Learning
- Point cloud **representation** from feature graph learning
- Point cloud **reconstruction** from graph spectral prior
- Point cloud **analysis** in the graph spectral domain
- Summary and future works

Problem Statement - Feature graph learning

- **Problem:** The graph is often unavailable over geometric data
- **Previous works:**
	- Previous graph learning methods often require *multiple observations*
- **Contributions:**
	- Given **feature vector** per node, we propose feature graph learning from only **a single or even partial signal observation**
	- \triangleright Develop a fast algorithm (eigen-decomposition-free)

Wei Hu, Xiang Gao, Gene Cheung, Zongming Guo, "Feature Graph Learning for 3D Point Cloud Denoising," *IEEE Transactions on Signal Processing (TSP)*, vol. 68, pp.2841-2856, March 2020.

Cheng Yang, Gene Cheung, Wei Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," accepted to *IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*, 2021.

Key Idea - Feature graph learning

- The key idea: learn a good distance metric matrix
- Given **a single or partial observation** with relevant **feature vector** f_i , compute the *Mahalanobis distance*: $\delta_{i,j} = (\mathbf{f}_i - \mathbf{f}_j)^\top \mathbf{M} (\mathbf{f}_i - \mathbf{f}_j)$ PD **metric matrix**
- Edge weight of feature graph is $\ w_{i,\,j} = \exp{\{-\delta_{i,\,j}\}} \leftarrow$ feature distance
- Minimize **Graph Laplacian Regularizer** (GLR):

$$
\min_{\mathbf{M}} \left[\mathbf{x}^{\top} \mathbf{L} \mathbf{x} = \sum_{i,j} w_{i,j} (x_i - x_j)^2 \right] = \sum_{i,j} \exp \left\{ - (\mathbf{f}_i - \mathbf{f}_j)^{\top} \mathbf{M} (\mathbf{f}_i - \mathbf{f}_j) \right\} d_{i,j}
$$
\ns.t.

\n
$$
\mathbf{M} \succ 0; \quad \text{tr}(\mathbf{M}) \leq C.
$$
\nMinimizing GLR makes the graph adapt to the signal structure

Solved via our proposed **eigen-decomposition-free** block-coordinate descent algorithm

Results: 3D Point Cloud Denoising

Wei Hu, Xiang Gao, Gene Cheung, Zongming Guo, "Feature Graph Learning for 3D Point Cloud Denoising," *IEEE Transactions on Signal Processing (TSP)*, vol. 68, pp.2841-2856, March 2020.

Results: 3D Point Cloud Denoising

Wei Hu, Xiang Gao, Gene Cheung, Zongming Guo, "Feature Graph Learning for 3D Point Cloud Denoising," *IEEE Transactions on Signal Processing (TSP)*, vol. 68, pp.2841-2856, March 2020.

- Introduction to geometric data processing and analysis over graphs
- Basics in Graph Signal Processing and Graph-based Machine Learning
- Point cloud **representation** from feature graph learning
- Point cloud **reconstruction** from graph spectral prior
- Point cloud **analysis** in the graph spectral domain
- Summary and future works

Problem Statement – Deep Point Set Resampling

- **Problem:** Real-word data often suffer from **noise**, **low density**…
- **Previous Works:**
	- Optimization-based approaches rely heavily on geometric priors
	- Deep learning methods often suffer from over-estimation or underestimation of the displacement
- **Contributions:**
	- \triangleright propose deep point set resampling for point cloud restoration, which models the distribution of degraded point clouds via **gradient fields** and converges points towards the underlying surface for restoration.

Shitong Luo, Wei Hu, "Score-Based Point Cloud Denoising," ICCV 2021. Haolan Chen, Bi'an Du, Shitong Luo, Wei Hu, "Deep Point Set Resampling via Gradient Fields," TPAMI, 2023.

Key Idea - Deep Point Set Resampling ALL SECTION

Key observation: the distribution of a noisy point cloud can be viewed as the distribution of noise-free points $p(x)$ convolved with some noise model n, leading to $(p * n)(x)$

Perform gradient ascent on the log-probability function $\log[(p * n)(x)]$? $p * n$ is unknown!

- estimate the **gradient field** of the distribution: $\nabla_x \log((p * n)(x))$.
- denoise the point cloud by gradient ascent to move noisy points towards the mode of $p * n$

Key Idea - Deep Point Set Resampling Allen

• introduce **regularization** (GLR, etc.) into the point set resampling process, to enhance the intermediate resampled point cloud iteratively **during the inference**

Results: Synthetic Point Cloud Denoising

Results: Synthetic Point Cloud Denoising

A gradient ascent trajectory of our point cloud denoising every other 10 steps.

Comparison with other methods

- (a) Gaussian noise
- (b) Synthetic Lidar noise

Results: Real-world Point Cloud Denoising

- Introduction to geometric data processing and analysis over graphs
- Basics in Graph Signal Processing and Graph-based Machine Learning
- Point cloud **representation** from feature graph learning
- Point cloud **reconstruction** from graph spectral prior
- Point cloud **analysis** in the graph spectral domain
- Summary and future works

RIDE Point Cloud Attacks in the Graph Spectral Domain

- **Problem:** Deep learning models have shown to be vulnerable to adversarial attacks, while **adversarial attacks on 3D point clouds** are still relatively under-explored.
- **Previous works: Attacks in the data domain**
	- **Limitation**: neglect the geometric characteristics of point clouds, which makes the perturbed point clouds perceivable to humans

• **Contributions:**

- \triangleright We propose a novel paradigm of point cloud attacks— **Graph Spectral Domain Attack (GSDA)**
- \triangleright Provide in-depth graph spectral analysis of point clouds

Qianjiang Hu, Daizong Liu, and Wei Hu, "Exploring the devil in graph spectral domain for 3D point cloud attacks," *ECCV*, 2022.

Reminder: Why Graph Fourier Transform

• Offer compact transform domain representation

- Reason: the graph adaptively captures the correlation in the graph signal
- \approx KLT for a family of statistical models

Wei Hu, Gene Cheung, Antonio Ortega, Oscar C. Au, "Multi-resolution Graph Fourier Transform for Compression of Piecewise Smooth Images," *IEEE Transactions on Image Processing*, vol. 24, no. 1, pp. 419-433, January 2015.

Key Idea – Attack in the Graph Spectral Domain TABLE

Key Idea – Attack in the Graph Spectral Domain

40

Key Idea – Attack in the Graph Spectral Domain Allen

• Given a clean point cloud $P = \{p_i\}_{i=1}^n \in \mathbb{R}^{n \times 3}$ and a well-trained classifier $f(\cdot)$, the accurate label $y = f(P)$, output an adversarial point cloud P' that $f(P') = y'$

$$
\min_{\mathbf{\Delta}} \mathcal{L}_{adv}(\mathbf{P}', \mathbf{P}, y), \text{s.t.} ||\phi_{\text{GFT}}(\mathbf{P}') - \phi_{\text{GFT}}(\mathbf{P})||_p < \epsilon,
$$
\nwhere $\mathbf{P}' = \phi_{\text{IGFT}}(\phi_{\text{GFT}}(\mathbf{P}) + \mathbf{\Delta}), \phi_{\text{GFT}}(\mathbf{P}) = \mathbf{U}^\top \mathbf{P}$

Qianjiang Hu, Daizong Liu, and Wei Hu, "Exploring the devil in graph spectral domain for 3D point cloud attacks," *ECCV*, 2022.

Dataset: ModelNet40

3D Models:

- PointNet
- PointNet++
- DGCNN

Results: visualization

Wen, Y., Lin, J., Chen, K., Chen, C.P., Jia, K., "Geometry-aware generation of adversarial point clouds," *IEEE TPAMI,* 2020.

- Introduction to geometric data processing and analysis over graphs
- Basics in Graph Signal Processing and Graph-based Machine Learning
- Point cloud **representation** from feature graph learning
- Point cloud **reconstruction** from graph spectral prior
- Point cloud **analysis** in the graph spectral domain
- Summary and future works

- Graph is flexible abstraction of geometric data residing on **irregular** domains
- Propose graph spectral methods for **robust** & **interpretable** processing and analysis
	- \triangleright Point cloud representation: feature graph learning
	- Point cloud reconstruction: graph spectral prior
	- \triangleright Point cloud analysis: low-pass property in the graph spectral domain
- Achieve efficient, robust and interpretable geometric data processing & analysis!

Ongoing & Future Works

- GSP for enhancing model interpretability
	- \triangleright e.g., the effect of graph optimization on the depth of GNNs
- Generalization / domain adaptation of point cloud learning
	- \triangleright Out-Of-Distribution, domain adaptation in Lidar point clouds
- Functional brain network analysis with GSP & GNNs
	- \triangleright e.g., neuron classification

Acknowledgement

Prof. Gene Cheung (York University, Canada)

Prof. Antonio Ortega (USC, USA)

Dr. Anthony Vetro (MERL, USA)

Prof. Chia-Wen Lin (NTHU, Taiwan)

Zhimin Zhang (Peking University)

Xiang Gao (Peking University)

Shitong Luo (Peking University)

Qianjiang Hu (Peking University)

Thank you!

Homepage: https://www.wict.pku.edu.cn/huwei/ Email: forhuwei@pku.edu.cn