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Limits of graph neural networks on large random graphs

GNN for large graphs

Theoretical properties of GNNs remain largely misunderstood.
Expressivity : what class of functions can GNNs approximate. Azizian et al.

Most studies have a combinatorial approach and focus on
graph-level prediction.
Graph isomorphism problem and comparison to WL test. Xu et al.

This is irrelevant on large graphs as they may have similar
structure but are never isomorphic. Moreover, we rather focus on
node-level prediction.
Different number of nodes, edges, etc..
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Limits of graph neural networks on large random graphs

Some classical problem related to GNN on large graphs

Stability to deformation, transferability.
Ruiz et al. 2020, Levie et al. 2021, Keriven et al. 2020

Expressive power : What class of function can GNNs approximate
Keriven et al. 2021, 2023

Generalisation : How well GNNs perform on unknown data
Maskey et al. 2022
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Limits of graph neural networks on large random graphs

Latent space random graph models

Let X ⊂ Rd , P a probability measure on X and W : X 2 → [0, 1] a
connectivity kernel. A random graph drawn from the model
(W ,P) has nodes :

X1, . . . ,Xn
iid∼ P.

1. Weighted sampled graph: fully connected and eij is given a
weight wij = W (Xi ,Xj).
Lovasz 2010.

2. Graphon model: eij ∼ B(W (Xi ,Xj))
Lovasz 2010.

3. Latent position model: eij ∼ B(αnW (Xi ,Xj)) where αn is a
sparsity factor.
Lei et al. 2015.
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Main idea of GNN on large random graphs

A GNN on a random graph drawn from (W ,P) has a “continuous”
counterpart c-GNN on the random graph model (W ,P).

GNN
Propagates a graph signal on a

sampling of X

Xi 7→ f (Xi ), i = 1 . . . , n

w.r.t the adjacency

W (Xi ,Xj), i , j = 1 . . . , n.

c-GNN
Propagates a function on the

latent space X

x 7→ f (x), x ∈ X ,

w.r.t the connectivity kernel

W (x , y), x , y ∈ X .
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Message Passing GNN (MPGNN)

Gather, Transform, Aggregate.

message

message

message

j
i

k

l

Layer l

⊕ Layer l + 1
aggregation
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Topic of this work : Convergence

Our Problem
Given a GNN structure and a random graph model (W ,P), does

the GNN on random graphs converge to its c-GNN counterpart as
n tends to infinity ? If yes, at which rate ?

Some existing related results

Keriven et. al 2021
For Latent position model (model 3).

For Spectral GNN

Maskey et al. 2022
For weighted sampled graph model
(model 1).

For Message Passing GNN with

degree normalized mean aggregation.

7 / 24



Limits of graph neural networks on large random graphs

Topic of this work : Convergence

Our Problem
Given a GNN structure and a random graph model (W ,P), does

the GNN on random graphs converge to its c-GNN counterpart as
n tends to infinity ? If yes, at which rate ?

Some existing related results

Keriven et. al 2021
For Latent position model (model 3).

For Spectral GNN

Maskey et al. 2022
For weighted sampled graph model
(model 1).

For Message Passing GNN with

degree normalized mean aggregation.

7 / 24



Limits of graph neural networks on large random graphs

Our results
Message passing with generic aggregation function.

Weighted sampled graph model (model 1.)

Under some regularity conditions on the aggregation: convergence

with rate at least O
((

ln n
n

)1/2
)

.

Particular case of max aggregation: convergence with rate

O
((

ln n
n

)1/d
)

(recall X ⊂ Rd).
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Formulation of message passing GNN

ΘG : Rn×d0 → Rn×dL is a L layers MPGNN.
Z (0) ∈ Rn×d0 is the input graph signal.

Definition

Z (1), . . . ,Z (L) are recursively computed by :

z
(l+1)
i = F (l+1)

(
z

(l)
i ,
{{(

z
(l)
j ,wi ,j

)}}
vj∈N (vi )

)
∈ Rdl+1 . (1)

The output is :
ΘG (Z (0)) = Z (L).

The F (l) are called the aggregations.

9 / 24



Limits of graph neural networks on large random graphs

Major property : permutation equivariance

Equivariance to graph isomorphism

Let σ ∈ Sn. If σ · G and σ · Z are the isomorphic graph and
graph signal where nodes have been relabeled w.r.t σ. Then

Θσ·G (σ · Z ) = σ ·ΘG (Z )

To that extent, the aggregation ignores ordering of the
neighborhood.
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Examples

1 Convolutional Bronstein et al. 2021

z
(l+1)
i =

1

|N (vi )|
∑

vj∈N (vi )

wi ,jψ
(l+1)

(
z

(l)
j

)
.

2 GAT Velickovic et al. 2018

z
(l+1)
i =

∑
j∈N (vi )

c
(l+1)
ij∑

k∈N (vi )
c

(l+1)
ik

ψ(l+1)(z
(l)
j ).

Where c
(l+1)
ij = c(l+1)(z

(l)
i , z

(l)
j ,wij).

3 Max Convolutional Hamilton et al. 2018

z
(l+1)
i = max

vj∈N (vi )
wi ,jψ

(l+1)
(
z

(l)
j

)
.

If c
(l+1)
ij = wij , we obtain the Degree Normalized MPGNN , Maskey et al. 2022
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On random graphs

We recall the random graph model 1:

X ⊂ Rd is compact.
P is a Borel probability measure on X .
W : X 2 → [0, 1] is a measurable symmetrical kernel.

Definition (Random Graph Model)

(W ,P) is a Random Graph Model on X . G ∼ Gn(W ,P) if :

? V (G ) = {Xi , . . . ,Xn}, where Xi
iid∼ P.

? G is complete.

? wi ,j = wj ,i = W (Xi ,Xj).
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GNN on large random graph : intuition

Let f : X → Rd0 , Z = (f (Xi ), . . . , f (Xn)) be a input signal.

1 Convolutional

1

n

∑
i

W (Xi ,Xj)ψ (f (Xi )) 
∫
y∈X

W (x , y)ψ(f (y))dP(y).

2 GAT∑ cij∑
cij
ψ (f (Xi )) 

∫
X

c(x , y)∫
X c(x , t)dP(t)

ψ (f (y)) dP(y).

3 Max Convolutional

max
i

W (Xi ,Xj)ψ(f (Xi )) ess sup
y∈X

W (x , y)ψ(f (y)).
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Formulation of c-GNN

Propagates a signal over a graph  Propagates a function over a
latent space.

(W ,P) is a random graph model.
f = f (0) : X → Rd0 is an input signal.
ΘW ,P : (X → Rd0) −→ (X → RdL) is a L-layers c-GNN.

Definition

f (1), . . . , f (l) are recursively computed by :

f (l+1)(x) = F (l+1)
P

(
f (l)(x),

(
f (l),W (x , ·)

))
∈ Rdl+1

Final output : ΘW ,P(f ) = f (L) : X → RdL .
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Required property : “continuous permutation” equivariance

Equivariance to random graph model isomorphism

φ : X → X is a bimeasurable bijection.

φ · (W ,P) = (W (φ−1(·), φ−1(·)), φ#P) is an isomorphic random
graph model.

φ · f = f ◦ φ−1 is the isomorphic signal on φ · (W ,P).
Then,

Θφ·(W ,P)(φ · f ) = φ ·ΘW ,P(f )

φ#P is the pushforward measure of P through φ : φ#P(A) = P(φ−1(A)) for
any measurable set A.
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countinuous counterparts of examples

1 Convolutional

f (l+1)(x) =

∫
y∈X

W (x , y)ψ(l+1)
(
f (l)(y)

)
dP(y)

2 GAT

f (l+1)(x) =

∫
y∈X

c(l+1)(x , y)∫
t∈X c(l+1)(x , y)dP(t)

ψ(l+1)
(
f (l)(y)

)
dP(y).

Where c(l+1)(x , y) = c(l+1)(f (l)(x), f (l)(y),W (x , y)).

3 Max Convolutional

f (l+1)(x) = ess sup
y∈X , P

W (x , y)ψ(l+1)
(
f (l)(y)

)
.
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Convergence

We want to characterize convergence of a GNN on large random
graphs. For Gn ∼ Gn(W ,P) do ΘGn → ΘW ,P ? At which speed ?

Define Sx the sampling operator at (X1, . . . ,Xn).

(f (Xi ))i=1...,n = Z Z (L) ∈ Rn×dL

f

f (L)
(
f (L)(Xi )

)
i=1...,n

∈ Rn×dL

ΘGn

SX

ΘW ,P

SX

Error: max1≤i≤n ‖Z
(L)
i − f (L)(Xi )‖∞

Main tool: Concentration inequalities
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Convergence for ”smooth aggregation”

Main tool : McDiarmid concentration inequaltiy.

Definition (Bounded differences)

Let f : En → Rd . C1, . . . ,Cn are the bounded differences of f if :

|f (x1 . . . , xi , . . . , xn)− f (x1, . . . , x
′
i , . . . , xn)| ≤ Ci ,

∀x1, . . . , xn, x
′
i ∈ E .

Theorem

If f has finite bounded differences, then for any independent
random variables X1, . . . ,Xn , f (X1, . . . ,Xn) has a sub-Gaussian
concentration around its expected value.

18 / 24



Limits of graph neural networks on large random graphs

Suppose F (l) is Lipschitz continuous for a well chosen metric.
Then it has finite bounded differences and they can be chosen all

equal by symmety: D
(l)
n = C

(l)
1 = · · · = C

(l)
n . Then

Theorem (informal)

Let ρ > 0, with probability at least 1− ρ:

max
1≤i≤n

‖z(L)
i − f (L)(Xi )‖∞ . LDn

√
n ln

(
n2Ldm
ρ

)
+ Lrn (2)

Dn = maxl D
(l)
n , dm = max dl , rn is a remainder that is specific to

the network.

Corollary (sufficient condition of convergence)

If Dn = o
(

1/
√
n ln n

)
then (2) tends to 0.
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Example Dn rn Dn = o
(

1/
√
n ln n

)
Conv O(1/n) 0 X
GAT 1 O(1/n) O(1/

√
n) X

Max. Conv Ω(1) − 7

Max does not have sharp bounded differences =⇒ we need other
concentration inequality.

1Under some Lipschitz regularity condition on the attention coefficients c (l).
20 / 24
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Convergence for Max Conv GNN

Theorem

Upon some regularity condition on (X ,P), let ρ > 0, then with
probability at least 1− ρ:

max
1≤i≤n

‖z(L)
i − f (L)(Xi )‖∞ . L

(
1

n
ln

(
2Lndmax

ρ

))1/d

, (3)
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Remark

For max aggregation, convergence speed depends on input
dimension.

101 102 103

number of nodes

10 1

er
ro

r

d=2 (real)
d=2 (theory)
d=3 (real)
d=3 (theory)
d=5 (real)
d=5 (theory)
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Conclusion

We have proven convergence of GNNs to their countinuous
counterparts when the aggregation has a “Lipschitz-type”
smoothness.

We have proven it too for max aggregation and observed a
different behaviour.

McDiarmid concentration inequality may be suboptimal ? Can we
find an aggregation with intermediate convergence speed bewteen
(1/n)1/2 and (1/n)1/d ?

Can we extend to more realistic random graph models (model 3.) ?

How to use c-GNNs to understand GNNs.
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Thank you for your attention.
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