

Robust Graph Filter Identification and Graph Denoising from Signal Observations

Samuel Rey

King Juan Carlos University - Madrid (Spain) In collaboration with Victor Tenorio, Antonio G. Marques

Graph Signal Processing Workshop 2023 (GSP 2023) - Oxford, United Kingdom - June 12-14, 2023

Universidad Rey Juan Carlos

- Data is becoming heterogeneous and pervasive [Kolaczyk09][Leskovec20]
 - \Rightarrow Often defined over irregular domains and networks
 - \Rightarrow More complex structure demands more complex architectures
- **GSP**: models data structure as a graph [Shuman13][Ortega18]
 - \Rightarrow Leverages the graph topology to process the data

Social network

Brain network

Home automation network

Robust Graph Filter Identification and Graph Denoising from Signal Observations

Universidad Rey Juan Carlos

- Data is becoming heterogeneous and pervasive [Kolaczyk09][Leskovec20]
 - \Rightarrow Often defined over irregular domains and networks
 - \Rightarrow More complex structure demands more complex architectures
- ► GSP: models data structure as a graph [Shuman13][Ortega18]
 - \Rightarrow Leverages the graph topology to process the data
- Problem: data is prone to errors and imperfections
 - \Rightarrow Noise, missing values, or outliers are pervasive in data science

Social network

Brain network

Home automation network

Imperfections in the graph topology

- \Rightarrow Large perturbations render data useless
- \Rightarrow Widely study in several fields

Imperfections in the graph topology

- Signal processing deals with perturbations on the signals
 - \Rightarrow Large perturbations render data useless
 - \Rightarrow Widely study in several fields
- ► In GSP we encounter perturbations in the graph topology
 - \Rightarrow Even small perturbations lead to challenging problems
 - \Rightarrow Most GSP methods assume the graph is perfectly known

Imperfections in the graph topology

- Signal processing deals with perturbations on the signals
 - \Rightarrow Large perturbations render data useless
 - \Rightarrow Widely study in several fields
- ► In GSP we encounter perturbations in the graph topology
 - \Rightarrow Even small perturbations lead to challenging problems
 - \Rightarrow Most GSP methods assume the graph is perfectly known

This work: approach the graph FI accounting for topology imperfections

Fundamentals of GSP

▶ Graph G = (V, E) with N nodes and adjacency A ⇒ A_{ij} = Proximity between i and j

► Define a signal $\mathbf{x} \in \mathbb{R}^N$ on top of the graph $\Rightarrow x_i = \text{Signal value at node } i$

► Associated with \mathcal{G} is the graph-shift operator $\mathbf{S} \in \mathbb{R}^{N \times N}$ (e.g. A, L) $\Rightarrow S_{ij} \neq 0$ if i = j or $(i, j) \in \mathcal{E}$ (local structure in \mathcal{G})[Shuman13][Sandryhaila13] \Rightarrow Diagonalized as $\mathbf{S} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1}$

▶ Graph G = (V, E) with N nodes and adjacency A ⇒ A_{ij} = Proximity between i and j

► Define a signal $\mathbf{x} \in \mathbb{R}^N$ on top of the graph $\Rightarrow x_i = \text{Signal value at node } i$

- ► Associated with \mathcal{G} is the graph-shift operator $\mathbf{S} \in \mathbb{R}^{N \times N}$ (e.g. A, L) $\Rightarrow S_{ij} \neq 0$ if i = j or $(i, j) \in \mathcal{E}$ (local structure in \mathcal{G})[Shuman13][Sandryhaila13] \Rightarrow Diagonalized as $\mathbf{S} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1}$
- Graph filters are defined as $\mathbf{H} = \sum_{r=0}^{R-1} h_r \mathbf{S}^r$ [Segara17]
 - \Rightarrow Diagonalized as $\mathbf{H} = \mathbf{V} \mathsf{diag}(\tilde{\mathbf{h}}) \mathbf{V}^{-1}$
 - $\Rightarrow \mathbf{S}^r$ encodes $\mathit{r}\text{-}\mathsf{hop}$ neighborhood so $\mathbf{H}\mathbf{x}$ diffuses \mathbf{x} across $\mathcal G$

GF ID and influence of perturbations

- Universidad Rey Juan Carlos
- **GF** identification: estimate the graph filter $\mathbf{H} = \sum_{r=0}^{R-1} h_r \mathbf{S}^r$
 - \Rightarrow Given input/output signals $\mathbf{X}/\mathbf{Y} \in \mathbb{R}^{N \times M}$ with $\mathbf{Y} = \mathbf{H}\mathbf{X} + \mathbf{W}$
 - \Rightarrow Leveraging that ${\bf H}$ is a polynomial of the GSO

GF ID and influence of perturbations

- **GF** identification: estimate the graph filter $\mathbf{H} = \sum_{r=0}^{R-1} h_r \mathbf{S}^r$
 - \Rightarrow Given input/output signals $\mathbf{X}/\mathbf{Y} \in \mathbb{R}^{N \times M}$ with $\mathbf{Y} = \mathbf{H}\mathbf{X} + \mathbf{W}$
 - \Rightarrow Leveraging that ${\bf H}$ is a polynomial of the GSO
- ► Due to perturbations the true **S** is **unknown** ⇒ Only perturbed $\bar{\mathbf{S}} \in \mathbb{R}^{N \times N}$ is observed
- ▶ **Q**: What if we estimate the filter as $\mathbf{H} = \sum_{r=0}^{R-1} h_r \mathbf{\bar{S}}^r$? ⇒ Error between \mathbf{S}^r and $\mathbf{\bar{S}}^r$ grows with r

GF ID and influence of perturbations

- **GF** identification: estimate the graph filter $\mathbf{H} = \sum_{r=0}^{R-1} h_r \mathbf{S}^r$
 - \Rightarrow Given input/output signals $\mathbf{X}/\mathbf{Y} \in \mathbb{R}^{N \times M}$ with $\mathbf{Y} = \mathbf{H}\mathbf{X} + \mathbf{W}$
 - \Rightarrow Leveraging that ${\bf H}$ is a polynomial of the GSO
- ► Due to perturbations the true **S** is **unknown** \Rightarrow Only perturbed $\bar{\mathbf{S}} \in \mathbb{R}^{N \times N}$ is observed
- ▶ **Q**: What if we estimate the filter as $\mathbf{H} = \sum_{r=0}^{R-1} h_r \bar{\mathbf{S}}^r$? ⇒ Error between \mathbf{S}^r and $\bar{\mathbf{S}}^r$ grows with r

• A: estimating H as polynomial of \overline{S} results in high estimation error

Robust Graph Filter Identification and Graph Denoising from Signal Observations

Modeling graph perturbations

- $\blacktriangleright\,$ Additive perturbation models are pervasive in SP $\,\,\Rightarrow\,$ In graphs ${\bf \bar{S}}={\bf S}+\Delta\,$
 - \Rightarrow Structure of $\Delta \in \mathbb{R}^{N \times N}$ depends on the type of perturbation
 - \Rightarrow S and $\bar{\mathbf{S}}$ are close according to some metric $d(\mathbf{S},\bar{\mathbf{S}})$

Graph perturbations

Modeling graph perturbations

Additive perturbation models are pervasive in SP ⇒ In graphs S
 = S + Δ
 ⇒ Structure of Δ ∈ ℝ^{N×N} depends on the type of perturbation
 ⇒ S and S are close according to some metric d(S, S)

Examples of topology perturbations

• When perturbations create/destroy edges $\implies d(\mathbf{S}, \bar{\mathbf{S}}) = \|\mathbf{S} - \bar{\mathbf{S}}\|_0$

 $\Rightarrow \Delta_{ij} = 1$ if $S_{ij} = 0$ and $\Delta_{ij} = -1$ if $S_{ij} = 1$

► When perturbations represent noisy edges $\implies d(\mathbf{S}, \bar{\mathbf{S}}) = \|\mathbf{S}_{\mathcal{E}} - \bar{\mathbf{S}}_{\mathcal{E}}\|_2^2$ $\Rightarrow \Delta_{ij} = 0 \text{ if } S_{ij} = 0 \text{ and } \Delta_{ij} \sim \mathcal{N}(0, \sigma^2) \text{ if } S_{ij} \neq 0$

Traditional filter identification (FI)

Consider formulation in either vertex or frequency domain

$$\min_{\mathbf{h}} \|\mathbf{Y} - \sum_{k=0}^{N-1} h_k \mathbf{S}^k \mathbf{X}\|_F^2 \qquad \min_{\tilde{\mathbf{h}}} \|\mathbf{Y} - \mathbf{V} \mathsf{diag}(\tilde{\mathbf{h}}) \mathbf{V}^\top \mathbf{X}\|_F^2$$

RFI as an optimization problem

Traditional filter identification (FI)

Consider formulation in either vertex or frequency domain

$$\min_{\mathbf{h},\mathbf{S}} \|\mathbf{Y} - \sum_{k=0}^{N-1} h_k \mathbf{S}^k \mathbf{X}\|_F^2 \qquad \min_{\mathbf{h},\mathbf{V}} \|\mathbf{Y} - \mathbf{V} \mathsf{diag}(\mathbf{\tilde{h}}) \mathbf{V}^\top \mathbf{X}\|_F^2$$

s. t. $\mathbf{S} \in \mathcal{S}$ s. t. $\mathbf{V} \mathbf{V}^\top = \mathbf{I}$

 \Rightarrow Modeling influence of perturbations in \mathbf{S}^k and \mathbf{V} is non-trivial

RFI as an optimization problem

Traditional filter identification (FI)

Consider formulation in either vertex or frequency domain

$$\min_{\mathbf{h},\mathbf{S}} \|\mathbf{Y} - \sum_{k=0}^{N-1} h_k \mathbf{S}^k \mathbf{X}\|_F^2 \qquad \min_{\tilde{\mathbf{h}},\mathbf{V}} \|\mathbf{Y} - \mathbf{V} \mathsf{diag}(\tilde{\mathbf{h}}) \mathbf{V}^\top \mathbf{X}\|_F^2$$

s. t. $\mathbf{S} \in \mathcal{S}$ s. t. $\mathbf{V} \mathbf{V}^\top = \mathbf{I}$

 \Rightarrow Modeling influence of perturbations in \mathbf{S}^k and \mathbf{V} is non-trivial

Robust filter identification (RFI)

 \blacktriangleright Define full H as an optimization variable and jointly estimate H and S

$$\min_{\mathbf{S}\in\mathcal{S},\mathbf{H}} \|\mathbf{Y} - \mathbf{H}\mathbf{X}\|_F^2 + \lambda d(\mathbf{S}, \bar{\mathbf{S}}) + \beta \|\mathbf{S}\|_0 \quad \text{s. t. } \mathbf{SH} = \mathbf{HS}$$

 \Rightarrow The constraint captures the fact that ${\bf H}$ is a polynomial of ${\bf S}$

- \Rightarrow Second term promotes closeness between $\bar{\mathbf{S}}$ and \mathbf{S}
- Operates in vertex domains + avoids computation of high-order polynomials
- Bilinear terms and ℓ_0 render the problem non-convex

Towards a convex formulation

Dealing with ℓ_0 norm

• We employ the ℓ_1 reweighted norm based on logarithmic penalty [Candes08]

$$\|\mathbf{Z}\|_0 \approx r_{\delta}(\mathbf{Z}) := \sum_{i=1}^{I} \sum_{j=1}^{J} \log(|Z_{ij}| + \delta)$$

- \Rightarrow Produces sparser solutions than ℓ_1 norm
- \Rightarrow Majorization-Minimization approach based on linear approximation

Towards a convex formulation

Dealing with ℓ_0 norm

• We employ the ℓ_1 reweighted norm based on logarithmic penalty [Candes08]

$$\|\mathbf{Z}\|_0 \approx r_{\delta}(\mathbf{Z}) := \sum_{i=1}^{I} \sum_{j=1}^{J} \log(|Z_{ij}| + \delta)$$

- \Rightarrow Produces sparser solutions than ℓ_1 norm
- \Rightarrow Majorization-Minimization approach based on linear approximation

Dealing with bilinear term

- Adopt an alternating-minimization approach to break the non-linearity
 - \Rightarrow H and S are estimated in two separate iterative steps
 - \Rightarrow Each step requires solving a convex optimization problem

Towards a convex formulation

Dealing with ℓ_0 norm

• We employ the ℓ_1 reweighted norm based on logarithmic penalty [Candes08]

$$\|\mathbf{Z}\|_0 \approx r_{\delta}(\mathbf{Z}) := \sum_{i=1}^{I} \sum_{j=1}^{J} \log(|Z_{ij}| + \delta)$$

- \Rightarrow Produces sparser solutions than ℓ_1 norm
- \Rightarrow Majorization-Minimization approach based on linear approximation

Dealing with bilinear term

- Adopt an alternating-minimization approach to break the non-linearity
 - \Rightarrow H and S are estimated in two separate iterative steps
 - \Rightarrow Each step requires solving a convex optimization problem
- Rewrite optimization problem as

 $\min_{\mathbf{S}\in\mathcal{S},\mathbf{H}}\|\mathbf{Y}\!-\!\mathbf{H}\mathbf{X}\|_F^2\!+\!\lambda r_{\delta_1}\!(\mathbf{S}\!-\!\bar{\mathbf{S}})\!+\!\beta r_{\delta_2}\!(\mathbf{S})\!+\!\gamma\|\mathbf{S}\mathbf{H}\!-\!\mathbf{H}\mathbf{S}\|_F^2$

 \Rightarrow Constraint $\mathbf{SH}=\mathbf{HS}$ relaxed as a regularizer

Alternating optimization algorithm

Step 1 - **GF Identification**: estimate $\mathbf{H}^{(t+1)}$ with $\mathbf{S}^{(t)}$ fixed

$$\mathbf{H}^{(t+1)} = \arg\min_{\mathbf{H}} \|\mathbf{Y} - \mathbf{H}\mathbf{X}\|_{F}^{2} + \gamma \|\mathbf{S}^{(t)}\mathbf{H} - \mathbf{H}\mathbf{S}^{(t)}\|_{F}^{2}$$

 \Rightarrow LS problem with closed-form solution inverting an $N^2 \times N^2$ matrix

Step 2 - Graph Denoising: estimate $S^{(t+1)}$ with $H^{(t+1)}$ fixed

$$\mathbf{S}^{(t+1)} = \arg\min_{\mathbf{S}\in\mathcal{S}} \sum_{i,j=1}^{N} \left(\lambda \bar{\Omega}_{ij}^{(t)} | S_{ij} - \bar{S}_{ij}| + \beta \Omega_{ij}^{(t)} | S_{ij}| \right) + \gamma \|\mathbf{S}\mathbf{H}^{(t+1)} - \mathbf{H}^{(t+1)}\mathbf{S}\|_{F}^{2}$$

 \Rightarrow With ℓ_1 weights $\Omega_{ij}^{(t)}, \overline{\Omega}_{ij}^{(t)}$ computed from previous GSO $\mathbf{S}^{(t)}$

Steps 1 and 2 repeated for $t = 0, ..., t_{max} - 1$ iterations

Alternating optimization algorithm

Step 1 - **GF Identification**: estimate $\mathbf{H}^{(t+1)}$ with $\mathbf{S}^{(t)}$ fixed

$$\mathbf{H}^{(t+1)} = \arg\min_{\mathbf{H}} \|\mathbf{Y} - \mathbf{H}\mathbf{X}\|_F^2 + \gamma \|\mathbf{S}^{(t)}\mathbf{H} - \mathbf{H}\mathbf{S}^{(t)}\|_F^2$$

 \Rightarrow LS problem with closed-form solution inverting an $N^2 \times N^2$ matrix

Step 2 - Graph Denoising: estimate $S^{(t+1)}$ with $H^{(t+1)}$ fixed

 $\mathbf{S}^{(t+1)} = \arg\min_{\mathbf{S}\in\mathcal{S}} \sum_{i,j=1}^{N} \left(\lambda \bar{\Omega}_{ij}^{(t)} | S_{ij} - \bar{S}_{ij}| + \beta \Omega_{ij}^{(t)} | S_{ij}| \right) + \gamma \|\mathbf{S}\mathbf{H}^{(t+1)} - \mathbf{H}^{(t+1)}\mathbf{S}\|_{F}^{2}$

 \Rightarrow With ℓ_1 weights $\Omega_{ij}^{(t)}, \overline{\Omega}_{ij}^{(t)}$ computed from previous GSO $\mathbf{S}^{(t)}$

Steps 1 and 2 repeated for $t = 0, ..., t_{max} - 1$ iterations

Theorem

The RFI algorithm converges to an stationary point if S does not have repeated eigenvalues and every row of $\tilde{X} = V^{-1}X$ are nonzero

- Now the goal is to estimate K GFs $\{\mathbf{H}_k\}_{k=1}^K$
 - \Rightarrow For each \mathbf{H}_k we have M_k input/output signals $\mathbf{X}_k/\mathbf{Y}_k$

Several GFs show up in relevant settings [Segarra16][Isufi16]

- \Rightarrow Different network processes on a graph $\mathbf{Y}_k \!=\! \mathbf{H}_k \mathbf{X}_k \!+\! \mathbf{W}_k$
- \Rightarrow Graph-based multivariate time series $\mathbf{Y}_{\kappa} = \sum_{k=1}^{K} \mathbf{H}_{k} \mathbf{Y}_{\kappa-k} + \mathbf{X}_{\kappa} + \mathbf{W}_{k}$

- Now the goal is to estimate K GFs $\{\mathbf{H}_k\}_{k=1}^K$
 - \Rightarrow For each \mathbf{H}_k we have M_k input/output signals $\mathbf{X}_k/\mathbf{Y}_k$
- Several GFs show up in relevant settings [Segarra16][Isufi16]
 - \Rightarrow Different network processes on a graph $\mathbf{Y}_k\!=\!\mathbf{H}_k\mathbf{X}_k\!+\!\mathbf{W}_k$
 - \Rightarrow Graph-based multivariate time series $\mathbf{Y}_{\kappa} = \sum_{k=1}^{K} \mathbf{H}_{k} \mathbf{Y}_{\kappa-k} + \mathbf{X}_{\kappa} + \mathbf{W}_{k}$
- ► Joint identification exploits each \mathbf{H}_k being a polynomial on \mathbf{S} $\min_{\mathbf{S}\in\mathcal{S}, \{\mathbf{H}_k\}_{k=1}^K} \sum_{k=1}^K \alpha_k \|\mathbf{Y}_k - \mathbf{H}_k \mathbf{X}_k\|_F^2 + \lambda r_{\delta_1}(\mathbf{S} - \bar{\mathbf{S}}) + \beta r_{\delta_2}(\mathbf{S}) + \sum_{k=1}^K \gamma \|\mathbf{S}\mathbf{H}_k - \mathbf{H}_k \mathbf{S}\|_F^2$
 - \Rightarrow K commutativity constraints improve estimation of ${\bf S}$
 - \Rightarrow A better estimate of S leads to better estimates of \mathbf{H}_k
- Solved via 2-step alternating optimization

Efficient implementation

Universidad Rey Juan Carlos

▶ RFI algorithm has a computational complexity of $O(N^7)$

- \Rightarrow Prohibitive for large graphs
- \Rightarrow Steps 1 and 2 can be accelerated via an iterative process

Efficient implementation

Universidad Rey Iuan Carlo

▶ RFI algorithm has a computational complexity of $O(N^7)$

- \Rightarrow Prohibitive for large graphs
- \Rightarrow Steps 1 and 2 can be accelerated via an iterative process

Step 1 - Efficient GF Identification

- \Rightarrow Estimate $\mathbf{H}^{(t+1)}$ performing τ_{max_1} iterations of gradient descent
- \Rightarrow Involves multiplications of $N\times N$ matrices

Step 2 - Efficient Graph Denoising

- \Rightarrow Estimate $\mathbf{S}^{(t+1)}$ via alternating optimization for τ_{max_2}
- \Rightarrow Solve N^2 scalar problems
- \Rightarrow Closed-form solution based on projected soft-thresholding
- Computational complexity reduced to $\mathcal{O}(N^3)$

Numerical Evaluation (I)

😐 U Universidad Rey Juan Carlos

- \blacktriangleright Test the estimates $\hat{\mathbf{H}}$ and $\hat{\mathbf{S}}$ with and without robust approach
 - \Rightarrow Graphs are sampled from the small-world random graph model
 - \Rightarrow We consider different types of perturbations

- RFI consistently outperforms classical FI
 - \Rightarrow Clear improvement in estimation of ${\bf S}$ with respect to $\bar{{\bf S}}$
- Only destroying links is the most damaging perturbation

Numerical Evaluation (II)

Universidad Rey Juan Carlos

- Dataset: 5-nearest neighbor graph of weather stations in California
 ⇒ Signals are temperature measurements
- ▶ Goal: Predict temperature 1 or 3 days in the future
 - \Rightarrow Estimate ${\bf H}$ using 25% or 50% of the available data
- Consider LS as a naive solution and TLS-SEM as a robust baseline

Models	1-Step		3-Step	
	TTS=0.25	TTS = 0.5	TTS=0.25	TTS = 0.5
LS	$6.9 \cdot 10^{-3}$	$3.1 \cdot 10^{-3}$	$2.1 \cdot 10^{-2}$	$9.1 \cdot 10^{-3}$
LS-GF	$3.3 \cdot 10^{-3}$	$3.3 \cdot 10^{-3}$	$8.4 \cdot 10^{-3}$	$8.5 \cdot 10^{-3}$
TLS-SEM	$4.0 \cdot 10^{1}$	$3.7\cdot10^{-2}$	$6.8\cdot10^{-1}$	$5.5\cdot10^{-2}$
RFI	$3.4 \cdot 10^{-3}$	$3.1 \cdot 10^{-3}$	$8.5 \cdot 10^{-3}$	$7.5 \cdot 10^{-3}$
AR(3)-RFI	$3.2\cdot10^{-3}$	$2.8\cdot10^{-3}$	$7.8\cdot10^{-3}$	$6.9\cdot10^{-3}$

Best performance achieved by joint inference assuming AR model of order 3
 ⇒ Follow up closely by the (separate) RFI algorithm

- \blacktriangleright Proposed a general robust graph filter identification model that \Rightarrow Simultaneously learns S and H
- Problem formulated as a non-convex optimization problem
 ⇒ Convex algorithm based on AM and MM techniques
 ⇒ Proposed algorithm is shown to converge to a stationary point
- Generalized to joint GF identification to deal with several GFs
- Efficient algorithm to deal with graphs with large number of nodes
- Numerical evaluation over synthetic and real-world graphs ⇒ Code: https://github.com/reysam93/graph_denoising

Questions at: samuel.rey.escudero@urjc.es

Samuel Rey

Robust Graph Filter Identification and Graph Denoising from Signal Observations

15/15