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Why a robust GSP framework?

I Data is becoming heterogeneous and pervasive [Kolaczyk09][Leskovec20]

⇒ Often defined over irregular domains and networks

⇒ More complex structure demands more complex architectures

I GSP: models data structure as a graph [Shuman13][Ortega18]

⇒ Leverages the graph topology to process the data

I Problem: data is prone to errors and imperfections

⇒ Noise, missing values, or outliers are pervasive in data science

Social network Brain network Home automation network
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Imperfections in the graph topology

I Signal processing deals with perturbations on the signals

⇒ Large perturbations render data useless

⇒ Widely study in several fields

I In GSP we encounter perturbations in the graph topology

⇒ Even small perturbations lead to challenging problems

⇒ Most GSP methods assume the graph is perfectly known

True signal Noisy signal

I This work: approach the graph FI accounting for topology imperfections
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Fundamentals of GSP

I Graph G = (V, E) with N nodes and adjacency A

⇒ Aij = Proximity between i and j

I Define a signal x ∈ RN on top of the graph

⇒ xi = Signal value at node i

I Associated with G is the graph-shift operator S ∈ RN×N (e.g. A, L)

⇒ Sij 6=0 if i=j or (i, j)∈E (local structure in G)[Shuman13][Sandryhaila13]

⇒ Diagonalized as S = VΛV−1

I Graph filters are defined as H =
∑R−1
r=0 hrS

r [Segarra17]

⇒ Diagonalized as H = Vdiag(h̃)V−1

⇒ Sr encodes r-hop neighborhood so Hx diffuses x across G
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GF ID and influence of perturbations

I GF identification: estimate the graph filter H =
∑R−1
r=0 hrS

r

⇒ Given input/output signals X/Y ∈ RN×M with Y = HX + W

⇒ Leveraging that H is a polynomial of the GSO

I Due to perturbations the true S is unknown

⇒ Only perturbed S̄ ∈ RN×N is observed

I Q: What if we estimate the filter as H =
∑R−1
r=0 hrS̄

r ?

⇒ Error between Sr and S̄r grows with r

I A: estimating H as polynomial of S̄ results in high estimation error
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Graph perturbations

Modeling graph perturbations

I Additive perturbation models are pervasive in SP ⇒ In graphs S̄ = S + ∆

⇒ Structure of ∆ ∈ RN×N depends on the type of perturbation

⇒ S and S̄ are close according to some metric d(S, S̄)

Examples of topology perturbations

I When perturbations create/destroy edges =⇒ d(S, S̄) = ‖S− S̄‖0
⇒ ∆ij = 1 if Sij = 0 and ∆ij = −1 if Sij = 1

I When perturbations represent noisy edges =⇒ d(S, S̄) = ‖SE − S̄E‖22
⇒ ∆ij = 0 if Sij = 0 and ∆ij ∼ N (0, σ2) if Sij 6= 0

Original graph Create/Destroy edges Noisy edges
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RFI as an optimization problem

Traditional filter identification (FI)
I Consider formulation in either vertex or frequency domain

min
h

,S

‖Y−
N−1∑
k=0

hkS
kX‖2F min

h̃

,V

‖Y−Vdiag(h̃)V>X‖2F

s. t. S ∈ S s. t. VV> = I

⇒ Modeling influence of perturbations in Sk and V is non-trivial

Robust filter identification (RFI)

I Define full H as an optimization variable and jointly estimate H and S

min
S∈S,H

‖Y−HX‖2F + λd(S, S̄) + β‖S‖0 s. t. SH = HS

⇒ The constraint captures the fact that H is a polynomial of S

⇒ Second term promotes closeness between S̄ and S

I Operates in vertex domains + avoids computation of high-order polynomials

I Bilinear terms and `0 render the problem non-convex
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Towards a convex formulation

Dealing with `0 norm

I We employ the `1 reweighted norm based on logarithmic penalty [Candes08]

‖Z‖0 ≈ rδ(Z) :=

I∑
i=1

J∑
j=1

log(|Zij |+ δ)

⇒ Produces sparser solutions than `1 norm

⇒ Majorization-Minimization approach based on linear approximation

Dealing with bilinear term

I Adopt an alternating-minimization approach to break the non-linearity

⇒ H and S are estimated in two separate iterative steps

⇒ Each step requires solving a convex optimization problem

I Rewrite optimization problem as

min
S∈S,H

‖Y−HX‖2F +λrδ1(S−S̄)+βrδ2(S)+γ‖SH−HS‖2F

⇒ Constraint SH = HS relaxed as a regularizer
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Alternating optimization algorithm

I Step 1 - GF Identification: estimate H(t+1) with S(t) fixed

H(t+1) = arg min
H
‖Y−HX‖2F +γ‖S(t)H−HS(t)‖2F

⇒ LS problem with closed-form solution inverting an N2 ×N2 matrix

I Step 2 - Graph Denoising: estimate S(t+1) with H(t+1) fixed

S(t+1) =arg min
S∈S

N∑
i,j=1

(
λΩ̄ij

(t)|Sij− S̄ij |+βΩij
(t)|Sij |

)
+γ‖SH(t+1)−H(t+1)S‖2F

⇒ With `1 weights Ω
(t)
ij , Ω̄

(t)
ij computed from previous GSO S(t)

I Steps 1 and 2 repeated for t = 0, ..., tmax − 1 iterations

Theorem

The RFI algorithm converges to an stationary point if S does not have
repeated eigenvalues and every row of X̃ = V−1X are nonzero
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Joint graph filter ID

I Now the goal is to estimate K GFs {Hk}Kk=1

⇒ For each Hk we have Mk input/output signals Xk/Yk

I Several GFs show up in relevant settings [Segarra16][Isufi16]

⇒ Different network processes on a graph Yk=HkXk+Wk

⇒ Graph-based multivariate time series Yκ=
∑K
k=1HkYκ−k+Xκ + Wk

I Joint identification exploits each Hk being a polynomial on S

min
S∈S,{Hk}Kk=1

K∑
k=1

αk‖Yk −HkXk‖2F +λrδ1(S−S̄)+βrδ2(S)+

K∑
k=1

γ‖SHk−HkS‖2F

⇒ K commutativity constraints improve estimation of S

⇒ A better estimate of S leads to better estimates of Hk

I Solved via 2-step alternating optimization
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Efficient implementation

I RFI algorithm has a computational complexity of O(N7)

⇒ Prohibitive for large graphs

⇒ Steps 1 and 2 can be accelerated via an iterative process

I Step 1 - Efficient GF Identification

⇒ Estimate H(t+1) performing τmax1 iterations of gradient descent

⇒ Involves multiplications of N ×N matrices

I Step 2 - Efficient Graph Denoising

⇒ Estimate S(t+1) via alternating optimization for τmax2

⇒ Solve N2 scalar problems

⇒ Closed-form solution based on projected soft-thresholding

I Computational complexity reduced to O(N3)
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Numerical Evaluation (I)

I Test the estimates Ĥ and Ŝ with and without robust approach

⇒ Graphs are sampled from the small-world random graph model

⇒ We consider different types of perturbations

I RFI consistently outperforms classical FI

⇒ Clear improvement in estimation of S with respect to S̄

I Only destroying links is the most damaging perturbation
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Numerical Evaluation (II)

I Dataset: 5-nearest neighbor graph of weather stations in California

⇒ Signals are temperature measurements

I Goal: Predict temperature 1 or 3 days in the future

⇒ Estimate H using 25% or 50% of the available data

I Consider LS as a naive solution and TLS-SEM as a robust baseline

Models
1-Step 3-Step

TTS=0.25 TTS = 0.5 TTS=0.25 TTS = 0.5
LS 6.9 · 10−3 3.1 · 10−3 2.1 · 10−2 9.1 · 10−3

LS-GF 3.3 · 10−3 3.3 · 10−3 8.4 · 10−3 8.5 · 10−3

TLS-SEM 4.0 · 101 3.7 · 10−2 6.8 · 10−1 5.5 · 10−2

RFI 3.4 · 10−3 3.1 · 10−3 8.5 · 10−3 7.5 · 10−3

AR(3)-RFI 3.2 · 10−3 2.8 · 10−3 7.8 · 10−3 6.9 · 10−3

I Best performance achieved by joint inference assuming AR model of order 3

⇒ Follow up closely by the (separate) RFI algorithm
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Closing remarks

I Proposed a general robust graph filter identification model that

⇒ Simultaneously learns S and H

I Problem formulated as a non-convex optimization problem

⇒ Convex algorithm based on AM and MM techniques

⇒ Proposed algorithm is shown to converge to a stationary point

I Generalized to joint GF identification to deal with several GFs

I Efficient algorithm to deal with graphs with large number of nodes

I Numerical evaluation over synthetic and real-world graphs

⇒ Code: https://github.com/reysam93/graph_denoising
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Questions at: samuel.rey.escudero@urjc.es
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