

Robust Graph Filter Identification and Graph Denoising from Signal Observations

Samuel Rey

King Juan Carlos University - Madrid (Spain) In collaboration with Victor Tenorio, Antonio G. Marques

Graph Signal Processing Workshop 2023 (GSP 2023) - Oxford, United Kingdom - June 12-14, 2023

- Data is becoming heterogeneous and pervasive [Kolaczyk09][Leskovec20]
	- \Rightarrow Often defined over irregular domains and networks
	- \Rightarrow More complex structure demands more complex architectures
- \triangleright GSP: models data structure as a graph [Shuman13][Ortega18]
	- \Rightarrow Leverages the graph topology to process the data

Social network **Brain network** Home automation network

- Data is becoming heterogeneous and pervasive [Kolaczyk09][Leskovec20]
	- \Rightarrow Often defined over irregular domains and networks
	- \Rightarrow More complex structure demands more complex architectures
- **GSP: models data structure as a graph [Shuman13][Ortega18]**
	- \Rightarrow Leverages the graph topology to process the data
- \triangleright Problem: data is prone to errors and imperfections \Rightarrow Noise, missing values, or outliers are pervasive in data science

Social network **Brain network** Home automation network

Imperfections in the graph topology

- \triangleright Signal processing deals with perturbations on the signals
	- \Rightarrow Large perturbations render data useless
	- ⇒ Widely study in several fields

Imperfections in the graph topology

 \triangleright Signal processing deals with perturbations on the signals

- \Rightarrow Large perturbations render data useless
- ⇒ Widely study in several fields
- \blacktriangleright In GSP we encounter perturbations in the graph topology
	- \Rightarrow Even small perturbations lead to challenging problems
	- \Rightarrow Most GSP methods assume the graph is perfectly known

Imperfections in the graph topology

 \triangleright Signal processing deals with perturbations on the signals

- \Rightarrow Large perturbations render data useless
- \Rightarrow Widely study in several fields
- \blacktriangleright In GSP we encounter perturbations in the graph topology
	- \Rightarrow Even small perturbations lead to challenging problems
	- \Rightarrow Most GSP methods assume the graph is perfectly known

 \triangleright This work: approach the graph FI accounting for topology imperfections

Fundamentals of GSP

Graph $G = (\mathcal{V}, \mathcal{E})$ with N nodes and adjacency A \Rightarrow A_{ij} = Proximity between *i* and *j*

▶ Define a signal $\mathbf{x} \in \mathbb{R}^N$ on top of the graph $\Rightarrow x_i =$ Signal value at node i

Associated with G is the graph-shift operator $S \in \mathbb{R}^{N \times N}$ (e.g. A, L) $\Rightarrow S_{ij} \neq 0$ if $i=j$ or $(i, j) \in \mathcal{E}$ (local structure in \mathcal{G})[Shuman13][Sandryhaila13] \Rightarrow Diagonalized as $S = V \Lambda V^{-1}$

Graph $G = (\mathcal{V}, \mathcal{E})$ with N nodes and adjacency A \Rightarrow A_{ij} = Proximity between i and j

▶ Define a signal $\mathbf{x} \in \mathbb{R}^N$ on top of the graph $\Rightarrow x_i =$ Signal value at node i

- Associated with G is the graph-shift operator $S \in \mathbb{R}^{N \times N}$ (e.g. A, L) $\Rightarrow S_{ij} \neq 0$ if $i=j$ or $(i, j) \in \mathcal{E}$ (local structure in \mathcal{G})[Shuman13][Sandryhaila13] \Rightarrow Diagonalized as $S = V \Lambda V^{-1}$
- ▶ Graph filters are defined as $\mathbf{H} = \sum_{r=0}^{R-1} h_r \mathbf{S}^r$ [Segarra17]
	- \Rightarrow Diagonalized as $H = V$ diag $(\tilde{h})V^{-1}$
	- \Rightarrow \mathbf{S}^{r} encodes r -hop neighborhood so $\mathbf{H}\mathbf{x}$ diffuses \mathbf{x} across \mathcal{G}

GF ID and influence of perturbations

- ▶ GF identification: estimate the graph filter $\mathbf{H} = \sum_{r=0}^{R-1} h_r \mathbf{S}^r$
	- \Rightarrow Given input/output signals $\mathbf{X}/\mathbf{Y}\in\mathbb{R}^{N\times M}$ with $\mathbf{Y}=\mathbf{H}\mathbf{X}+\mathbf{W}$
	- \Rightarrow Leveraging that H is a polynomial of the GSO

GF ID and influence of perturbations

- ▶ GF identification: estimate the graph filter $\mathbf{H} = \sum_{r=0}^{R-1} h_r \mathbf{S}^r$
	- \Rightarrow Given input/output signals $\mathbf{X}/\mathbf{Y}\in\mathbb{R}^{N\times M}$ with $\mathbf{Y}=\mathbf{H}\mathbf{X}+\mathbf{W}$
	- \Rightarrow Leveraging that H is a polynomial of the GSO
- \triangleright Due to perturbations the true S is unknown \Rightarrow Only perturbed $\bar{\mathbf{S}}\in \mathbb{R}^{N\times N}$ is observed
- ▶ Q: What if we estimate the filter as $\mathbf{H} = \sum_{r=0}^{R-1} h_r \bar{\mathbf{S}}^r$? \Rightarrow Error between \mathbf{S}^r and $\bar{\mathbf{S}}^r$ grows with r

GF ID and influence of perturbations

- ▶ GF identification: estimate the graph filter $\mathbf{H} = \sum_{r=0}^{R-1} h_r \mathbf{S}^r$
	- \Rightarrow Given input/output signals $\mathbf{X}/\mathbf{Y}\in\mathbb{R}^{N\times M}$ with $\mathbf{Y}=\mathbf{H}\mathbf{X}+\mathbf{W}$
	- \Rightarrow Leveraging that H is a polynomial of the GSO
- \triangleright Due to perturbations the true S is unknown \Rightarrow Only perturbed $\bar{\mathbf{S}}\in \mathbb{R}^{N\times N}$ is observed
- ▶ Q: What if we estimate the filter as $\mathbf{H} = \sum_{r=0}^{R-1} h_r \bar{\mathbf{S}}^r$? \Rightarrow Error between \mathbf{S}^r and $\bar{\mathbf{S}}^r$ grows with r

A: estimating H as polynomial of \overline{S} results in high estimation error

Modeling graph perturbations

- \triangleright Additive perturbation models are pervasive in SP \Rightarrow In graphs $\bar{S} = S + \Delta$
	- \Rightarrow Structure of $\bm{\Delta} \in \mathbb{R}^{N \times N}$ depends on the type of perturbation
	- \Rightarrow S and S are close according to some metric $d(S, \overline{S})$

Modeling graph perturbations

 \triangleright Additive perturbation models are pervasive in SP \Rightarrow In graphs $\bar{S} = S + \Delta$ \Rightarrow Structure of $\bm{\Delta} \in \mathbb{R}^{N \times N}$ depends on the type of perturbation \Rightarrow S and \bar{S} are close according to some metric $d(S, \bar{S})$

Examples of topology perturbations

 \triangleright When perturbations create/destroy edges $\implies d(S, \bar{S}) = \|S - \bar{S}\|_0$

$$
\Rightarrow \Delta_{ij} = 1 \text{ if } S_{ij} = 0 \text{ and } \Delta_{ij} = -1 \text{ if } S_{ij} = 1
$$

► When perturbations represent noisy edges $\implies d(\mathbf{S}, \bar{\mathbf{S}}) = \|\mathbf{S}_{\mathcal{E}} - \bar{\mathbf{S}}_{\mathcal{E}}\|_2^2$ $\Rightarrow \Delta_{ij}=0$ if $S_{ij}=0$ and $\Delta_{ij}\sim \mathcal{N}(0,\sigma^2)$ if $S_{ij}\neq 0$

Traditional filter identification (FI)

 \triangleright Consider formulation in either vertex or frequency domain

$$
\min_{\mathbf{h}} \|\mathbf{Y} - \sum_{k=0}^{N-1} h_k \mathbf{S}^k \mathbf{X} \|^2_F \qquad \min_{\tilde{\mathbf{h}}} \|\mathbf{Y} - \mathbf{V} \text{diag}(\tilde{\mathbf{h}}) \mathbf{V}^\top \mathbf{X} \|^2_F
$$

Traditional filter identification (FI)

 \triangleright Consider formulation in either vertex or frequency domain

$$
\min_{\mathbf{h}, \mathbf{S}} \|\mathbf{Y} - \sum_{k=0}^{N-1} h_k \mathbf{S}^k \mathbf{X}\|_F^2 \qquad \min_{\tilde{\mathbf{h}}, \mathbf{V}} \|\mathbf{Y} - \mathbf{V} \text{diag}(\tilde{\mathbf{h}}) \mathbf{V}^\top \mathbf{X}\|_F^2
$$

s. t. $\mathbf{S} \in \mathcal{S}$ s. t. $\mathbf{V} \mathbf{V}^\top = \mathbf{I}$

 \Rightarrow Modeling influence of perturbations in \mathbf{S}^k and \mathbf{V} is non-trivial

Traditional filter identification (FI)

 \triangleright Consider formulation in either vertex or frequency domain

$$
\min_{\mathbf{h}, \mathbf{S}} \|\mathbf{Y} - \sum_{k=0}^{N-1} h_k \mathbf{S}^k \mathbf{X} \|^2_F \qquad \min_{\mathbf{h}, \mathbf{V}} \|\mathbf{Y} - \mathbf{V} \text{diag}(\tilde{\mathbf{h}}) \mathbf{V}^\top \mathbf{X} \|^2_F
$$
s. t. $\mathbf{S} \in \mathcal{S}$ s. t. $\mathbf{V} \mathbf{V}^\top = \mathbf{I}$

 \Rightarrow Modeling influence of perturbations in \mathbf{S}^k and \mathbf{V} is non-trivial

Robust filter identification (RFI)

 \triangleright Define full H as an optimization variable and jointly estimate H and S

$$
\min_{\mathbf{S}\in\mathcal{S},\mathbf{H}} \|\mathbf{Y}-\mathbf{H}\mathbf{X}\|_{F}^{2} + \lambda d(\mathbf{S},\bar{\mathbf{S}}) + \beta \|\mathbf{S}\|_{0} \quad \text{s. t. } \mathbf{SH} = \mathbf{H}\mathbf{S}
$$

 \Rightarrow The constraint captures the fact that H is a polynomial of S

- \Rightarrow Second term promotes closeness between $\bar{\mathbf{S}}$ and S
- Operates in vertex domains $+$ avoids computation of high-order polynomials
- Bilinear terms and ℓ_0 render the problem non-convex

Towards a convex formulation

Dealing with ℓ_0 norm

 \triangleright We employ the ℓ_1 reweighted norm based on logarithmic penalty [Candes08]

$$
\|\mathbf{Z}\|_0 \approx r_\delta(\mathbf{Z}) := \sum_{i=1}^I \sum_{j=1}^J \log(|Z_{ij}| + \delta)
$$

 \Rightarrow Produces sparser solutions than ℓ_1 norm

 \Rightarrow Majorization-Minimization approach based on linear approximation

Towards a convex formulation

Dealing with ℓ_0 norm

 \triangleright We employ the ℓ_1 reweighted norm based on logarithmic penalty [Candes08]

$$
\|\mathbf{Z}\|_0 \approx r_\delta(\mathbf{Z}) := \sum_{i=1}^I \sum_{j=1}^J \log(|Z_{ij}| + \delta)
$$

 \Rightarrow Produces sparser solutions than ℓ_1 norm

 \Rightarrow Majorization-Minimization approach based on linear approximation

Dealing with bilinear term

- \triangleright Adopt an alternating-minimization approach to break the non-linearity
	- \Rightarrow H and S are estimated in two separate iterative steps
	- \Rightarrow Each step requires solving a convex optimization problem

Towards a convex formulation

Dealing with ℓ_0 norm

 \triangleright We employ the ℓ_1 reweighted norm based on logarithmic penalty [Candes08]

$$
\|\mathbf{Z}\|_0 \approx r_\delta(\mathbf{Z}) := \sum_{i=1}^I \sum_{j=1}^J \log(|Z_{ij}| + \delta)
$$

 \Rightarrow Produces sparser solutions than ℓ_1 norm

 \Rightarrow Majorization-Minimization approach based on linear approximation

Dealing with bilinear term

 \triangleright Adopt an alternating-minimization approach to break the non-linearity

- \Rightarrow H and S are estimated in two separate iterative steps
- \Rightarrow Each step requires solving a convex optimization problem
- Rewrite optimization problem as

 $\min_{\mathbf{S}\in\mathcal{S},\mathbf{H}}\|\mathbf{Y}-\mathbf{H}\mathbf{X}\|_F^2 + \lambda r_{\delta_1}(\mathbf{S}-\bar{\mathbf{S}}) + \beta r_{\delta_2}(\mathbf{S}) + \gamma \|\mathbf{S}\mathbf{H}-\mathbf{H}\mathbf{S}\|_F^2$

 \Rightarrow Constraint $SH = HS$ relaxed as a regularizer

Alternating optimization algorithm

Step 1 - GF Identification: estimate $\mathbf{H}^{(t+1)}$ with $\mathbf{S}^{(t)}$ fixed

$$
\mathbf{H}^{(t+1)} = \arg\min_{\mathbf{H}} \|\mathbf{Y} - \mathbf{H}\mathbf{X}\|_F^2 + \gamma \|\mathbf{S}^{(t)}\mathbf{H} - \mathbf{H}\mathbf{S}^{(t)}\|_F^2
$$

 \Rightarrow LS problem with closed-form solution inverting an $N^2 \times N^2$ matrix

Step 2 - Graph Denoising: estimate $S^{(t+1)}$ with $H^{(t+1)}$ fixed

$$
\mathbf{S}^{(t+1)} = \arg \min_{\mathbf{S} \in \mathcal{S}} \sum_{i,j=1}^{N} \left(\lambda \bar{\Omega}_{ij}^{(t)} | S_{ij} - \bar{S}_{ij} | + \beta \Omega_{ij}^{(t)} | S_{ij} \right) + \gamma ||\mathbf{S} \mathbf{H}^{(t+1)} - \mathbf{H}^{(t+1)} \mathbf{S} ||_{F}^{2}
$$

 \Rightarrow With ℓ_1 weights $\Omega_{ij}^{(t)}, \bar\Omega_{ij}^{(t)}$ computed from previous GSO $\mathbf{S}^{(t)}$

► Steps 1 and 2 repeated for $t = 0, ..., t_{max} - 1$ iterations

Alternating optimization algorithm

Step 1 - GF Identification: estimate $\mathbf{H}^{(t+1)}$ with $\mathbf{S}^{(t)}$ fixed

$$
\mathbf{H}^{(t+1)} = \arg\min_{\mathbf{H}} \|\mathbf{Y} - \mathbf{H}\mathbf{X}\|_F^2 + \gamma \|\mathbf{S}^{(t)}\mathbf{H} - \mathbf{H}\mathbf{S}^{(t)}\|_F^2
$$

 \Rightarrow LS problem with closed-form solution inverting an $N^2 \times N^2$ matrix

Step 2 - Graph Denoising: estimate $S^{(t+1)}$ with $H^{(t+1)}$ fixed

 $S^{(t+1)} = \arg\min_{S \in \mathcal{S}} \sum_{n=1}^{N}$ $i,j=1$ $\left(\lambda \bar{\Omega}_{ij}^{(t)} | S_{ij} - \bar{S}_{ij}| + \beta \Omega_{ij}^{(t)} | S_{ij} | \right) + \gamma \| \mathbf{SH}^{(t+1)} - \mathbf{H}^{(t+1)} \mathbf{S} \|^2_F$

 \Rightarrow With ℓ_1 weights $\Omega_{ij}^{(t)}, \bar\Omega_{ij}^{(t)}$ computed from previous GSO $\mathbf{S}^{(t)}$

► Steps 1 and 2 repeated for $t = 0, ..., t_{max} - 1$ iterations

Theorem

The RFI algorithm **converges to an stationary** point if S does not have repeated eigenvalues and every row of $\tilde{\mathbf{X}} = \mathbf{V}^{-1}\mathbf{X}$ are nonzero

 \blacktriangleright Now the goal is to estimate K GFs $\{\mathbf{H}_k\}_{k=1}^K$

 \Rightarrow For each H_k we have M_k input/output signals X_k/Y_k

 \triangleright Several GFs show up in relevant settings [Segarra16][Isufi16]

- \Rightarrow Different network processes on a graph $Y_k = H_k X_k + W_k$
- \Rightarrow Graph-based multivariate time series $\mathbf{Y}_\kappa\! =\! \sum_{k=1}^K\! \mathbf{H}_k\! \mathbf{Y}_{\kappa-k}\! +\! \mathbf{X}_\kappa+\mathbf{W}_k$

 \blacktriangleright Now the goal is to estimate K GFs $\{\mathbf{H}_k\}_{k=1}^K$

 \Rightarrow For each H_k we have M_k input/output signals X_k/Y_k

In Several GFs show up in relevant settings [Segarra16][Isufi16]

- \Rightarrow Different network processes on a graph $\mathbf{Y}_k = \mathbf{H}_k \mathbf{X}_k + \mathbf{W}_k$
- \Rightarrow Graph-based multivariate time series $\mathbf{Y}_\kappa\! =\! \sum_{k=1}^K\! \mathbf{H}_k\! \mathbf{Y}_{\kappa-k}\! +\! \mathbf{X}_\kappa+\mathbf{W}_k$

Joint identification exploits each \mathbf{H}_k being a polynomial on S $\min_{\mathbf{S} \in \mathcal{S}, \{\mathbf{H}_k\}_{k=1}^K}$ $\sum_{k=1}^{K}$ $k=1$ $\alpha_k\|\mathbf Y_k - \mathbf H_k\mathbf X_k\|_F^2 + \lambda r_{\delta_1}(\mathbf S\!-\!\bar{\mathbf S}) \!+\! \beta r_{\delta_2}(\mathbf S) \!+\! \sum^K_1$ $_{k=1}$ $\gamma \|\mathbf{SH}_k{-}\mathbf{H}_k\mathbf{S}\|_F^2$

 $\Rightarrow K$ commutativity constraints improve estimation of S

- \Rightarrow A better estimate of S leads to better estimates of H_k
- Solved via 2-step alternating optimization

Efficient implementation

RFI algorithm has a computational complexity of $\mathcal{O}(N^7)$

- \Rightarrow Prohibitive for large graphs
- \Rightarrow Steps 1 and 2 can be accelerated via an iterative process

Efficient implementation

RFI algorithm has a computational complexity of $\mathcal{O}(N^7)$

- \Rightarrow Prohibitive for large graphs
- \Rightarrow Steps 1 and 2 can be accelerated via an iterative process

\triangleright Step 1 - Efficient GF Identification

- \Rightarrow Estimate $\mathbf{H}^{(t+1)}$ performing τ_{max_1} iterations of gradient descent
- \Rightarrow Involves multiplications of $N \times N$ matrices

▶ Step 2 - Efficient Graph Denoising

- \Rightarrow Estimate ${\bf S}^{(t+1)}$ via alternating optimization for τ_{max_2}
- \Rightarrow Solve N^2 scalar problems
- \Rightarrow Closed-form solution based on projected soft-thresholding
- \blacktriangleright Computational complexity reduced to $\mathcal{O}(N^3)$

Numerical Evaluation (I)

- \triangleright Test the estimates \hat{H} and \hat{S} with and without robust approach
	- \Rightarrow Graphs are sampled from the small-world random graph model \Rightarrow We consider different types of perturbations

- RFI consistently outperforms classical FI
	- \Rightarrow Clear improvement in estimation of S with respect to S
- Only destroying links is the most damaging perturbation

Numerical Evaluation (II)

- \triangleright Dataset: 5-nearest neighbor graph of weather stations in California \Rightarrow Signals are temperature measurements
- \triangleright Goal: Predict temperature 1 or 3 days in the future
	- \Rightarrow Estimate H using 25% or 50% of the available data
- ▶ Consider LS as a naive solution and TLS-SEM as a robust baseline

Best performance achieved by joint inference assuming AR model of order 3 \Rightarrow Follow up closely by the (separate) RFI algorithm

- \triangleright Proposed a general robust graph filter identification model that \Rightarrow Simultaneously learns S and H
- \triangleright Problem formulated as a non-convex optimization problem \Rightarrow Convex algorithm based on AM and MM techniques \Rightarrow Proposed algorithm is shown to converge to a stationary point
- \triangleright Generalized to joint GF identification to deal with several GFs
- Efficient algorithm to deal with graphs with large number of nodes
- Numerical evaluation over synthetic and real-world graphs \Rightarrow Code: https://github.com/reysam93/graph_denoising

Questions at: samuel.rey.escudero@urjc.es

Samuel Rey **Robust Graph Filter Identification and Graph Denoising from Signal Observations** 15 / 15 / 15 / 15 / 15