

Tangent Bundle Filters and Neural Networks: from Manifolds to Cellular Sheaves and Back

Claudio Battiloro^{1,2}, Zhiyang Wang¹, Hans Riess³, Paolo Di Lorenzo², Alejandro Ribeiro¹

¹ ESE Dpt., University of Pennsylvania
 ² DIET Dpt., Sapienza University of Rome
 ³ PSE, Duke University

{clabat, zhiyangw}@seas.upenn.edu

GSP Workshop

June 12-14, 2023, Oxford, UK

- We introduce a convolution operation over the Tangent Bundle of Riemannian manifolds exploiting the Connection Laplacian operator
- We define Tangent Bundle Filters and Tangent Bundle Neural Networks (TNNs), novel architectures operating on tangent bundle signals, i.e. vector fields over manifolds
- We discretize TNNs both in space and time, showing that their discrete counterpart is a novel principled variant of the recently introduced Sheaf Neural Networks
- We prove that the discrete architecture converges to the underlying continuous TNN

Preliminary Definitions: Manifolds and Tangent Bundles

- ▶ We consider a compact and smooth *d*-dimensional manifold \mathcal{M} embedded in \mathbb{R}^{p}
- ▶ Each point $x \in M$ is endowed with a *d*-dimensional tangent (vector) space $\mathcal{T}_x \mathcal{M} \cong \mathbb{R}^d$
- $\mathbf{v} \in \mathcal{T}_x \mathcal{M}$ is said to be a tangent vector at x
- Tangent vectors can be seen as the velocity vector of a curve over \mathcal{M} passing through the point x

- We consider a compact and smooth *d*-dimensional manifold \mathcal{M} embedded in \mathbb{R}^{p}
- Each point $x \in \mathcal{M}$ is endowed with a *d*-dimensional tangent (vector) space $\mathcal{T}_x \mathcal{M} \cong \mathbb{R}^d$
- $\mathbf{v} \in \mathcal{T}_x \mathcal{M}$ is said to be a tangent vector at x
- ▶ The disjoint union of the tangent spaces is called the tangent bundle $TM = \bigsqcup_{x \in M} T_xM$
- ▶ Each tangent space $\mathcal{T}_x \mathcal{M}$ with a Riemann metric given, for each $\mathbf{v}, \mathbf{w} \in \mathcal{T}_x \mathcal{M}$, by

$$\langle \mathbf{v}, \mathbf{w} \rangle_{\mathcal{T}_{\mathbf{x}}\mathcal{M}} = i\mathbf{v} \cdot i\mathbf{w},$$

where $\mathbf{i}\mathbf{v} \in \mathcal{T}_x \mathbb{R}^p$ is the embedding of $\mathbf{v} \in \mathcal{T}_x \mathcal{M}$ in $\mathcal{T}_x \mathbb{R}^p \subset \mathbb{R}^p$ (the d-dimensional subspace of \mathbb{R}^p which is the embedding of $\mathcal{T}_x \mathcal{M}$ in \mathbb{R}^p)

• The Riemann metric induces a probability measure μ over the manifold

▶ A Tangent Bundle Signal is a vector field over the manifold, thus a mapping $\mathbf{F} : \mathcal{M} \to \mathcal{TM}$ that associates to each point of the manifold a vector in the corresponding tangent space

A Tangent Bundle Signal is a vector field over the manifold, thus a mapping $\mathbf{F} : \mathcal{M} \to \mathcal{TM}$ that associates to each point of the manifold a vector in the corresponding tangent space

► An inner product for tangent bundle signals **F** and **G** is

$$\langle \mathsf{F}, \mathsf{G}
angle_{\mathcal{T}\mathcal{M}} = \int_{\mathcal{M}} \langle \mathsf{F}(x), \mathsf{G}(x)
angle_{\mathcal{T}_x \mathcal{M}} \mathrm{d} \mu(x),$$

and the induced norm is $||\textbf{F}||_{\mathcal{TM}}^2=\langle\textbf{F},\textbf{F}\rangle_{\mathcal{TM}}$

- We denote with $\mathcal{L}^{2}(\mathcal{TM})$ the Hilbert Space of finite energy tangent bundle signals
- ► The Connection Laplacian is a (second-order) operator $\Delta : \mathcal{L}^2(\mathcal{TM}) \to \mathcal{L}^2(\mathcal{TM})$, given by the trace of the second covariant derivative defined via the Levi-Cita connection
- ▶ It is a means to diffuse vectors from one tangent space to another, because it encodes:
 - when tangent vectors are "parallel" (via the Connection)
 - bow to "move" them keeping them parallel (via the induced Parallel Transport operator)

▶ A Tangent Bundle Signal is a vector field over the manifold, thus a mapping $\mathbf{F} : \mathcal{M} \to \mathcal{TM}$ that associates to each point of the manifold a vector in the corresponding tangent space

► An inner product for tangent bundle signals **F** and **G** is

$$\langle \mathsf{F}, \mathsf{G}
angle_{\mathcal{T}\mathcal{M}} = \int_{\mathcal{M}} \langle \mathsf{F}(x), \mathsf{G}(x)
angle_{\mathcal{T}_{x}\mathcal{M}} \mathrm{d}\mu(x),$$

and the induced norm is $||\textbf{F}||_{\mathcal{TM}}^2=\langle\textbf{F},\textbf{F}\rangle_{\mathcal{TM}}$

- We denote with $\mathcal{L}^2(\mathcal{TM})$ the Hilbert Space of finite energy tangent bundle signals
- ► The Connection Laplacian is a (second-order) operator $\Delta : \mathcal{L}^2(\mathcal{TM}) \to \mathcal{L}^2(\mathcal{TM})$, given by the trace of the second covariant derivative defined via the Levi-Cita connection
- ▶ It is a means to diffuse vectors from one tangent space to another, because it encodes:
 - when tangent vectors are "parallel" (via the Connection)
 - how to "move" them keeping them parallel (via the induced Parallel Transport operator)

Connection Laplacian and Heat Equation

The Connection Laplacian characterize the vector heat equation over manifolds, governing the diffusion of tangent vectors:

$$\frac{\partial \mathbf{U}(x,t)}{\partial t} - \Delta \mathbf{U}(x,t) = 0,$$

where $\mathbf{U} : \mathcal{M} \times \mathbb{R}_0^+ \to \mathcal{TM}$ and $\mathbf{U}(\cdot,t) \in \mathcal{L}^2(\mathcal{TM}) \, \forall t \in \mathbb{R}_0^+$

With initial condition set as U(x, 0) = F(x), the solution is given by $U(x, t) = e^{t\Delta}F(x)$,

Connection Laplacian and Heat Equation

The Connection Laplacian characterize the vector heat equation over manifolds, governing the diffusion of tangent vectors:

$$\frac{\partial \mathsf{U}(x,t)}{\partial t} - \Delta \mathsf{U}(x,t) = 0,$$

where $\mathsf{U} : \mathcal{M} \times \mathbb{R}_0^+ \to \mathcal{T}\mathcal{M}$ and $\mathsf{U}(\cdot,t) \in \mathcal{L}^2(\mathcal{T}\mathcal{M}) \, \forall t \in \mathbb{R}_0^+$

• With initial condition set as U(x,0) = F(x), the solution is given by

 $\mathbf{U}(x,t)=e^{t\Delta}\mathbf{F}(x),$

Figure: "The Vector Heat Method", Sharp et al., ACM ToG, 2019

Tangent Bundle Filters and Neural Networks: from Manifolds to Cellular Sheaves and Back

🛜 Penn

The Connection Laplacian characterize the vector heat equation over manifolds, governing the diffusion of tangent vectors:

$$\frac{\partial \mathbf{U}(x,t)}{\partial t} - \Delta \mathbf{U}(x,t) = 0,$$

where $U: \mathcal{M} imes \mathbb{R}^+_0 o \mathcal{TM}$ and $U(\cdot, t) \in \mathcal{L}^2(\mathcal{TM}) \, \forall t \in \mathbb{R}^+_0$

• With initial condition set as U(x, 0) = F(x), the solution is given by

$$\mathbf{U}(x,t)=e^{t\Delta}\mathbf{F}(x)$$

▲ is a negative semidefinite, self-adjoint and elliptic operator, and this leads to a discrete spectrum {-λ_i, φ_i}[∞]_{i=1}, such that:

$$\Delta \mathsf{F} = \sum_{i=1}^{\infty} -\lambda_i \langle \mathsf{F}, \phi_i
angle_{\mathcal{TM}} \phi_i$$

Definition (Tangent Bundle Convolutional Filter)

The tangent bundle filter with impulse response $\tilde{h} : \mathbb{R}^+ \to \mathbb{R}$, denoted as **h**, is given by

$$\mathsf{G}(x) = (\mathsf{hF})(x) := (\tilde{h} \star_{\mathcal{TM}} \mathsf{F})(x) := \int_0^\infty \tilde{h}(t) \mathsf{U}(x, t) \mathrm{d}t,$$

where $\tilde{h}_{\star,M}F$ is the manifold convolution of \tilde{h} and F, U(x, t) is the solution of the heat equation

Injecting the heat equation solution, we can express the convolution with a parametric map

$$\mathbf{G}(x) = (\mathbf{h}\mathbf{F})(x) = \int_0^\infty \tilde{h}(t)e^{-t\Delta}\mathbf{F}(x)dt = \mathbf{h}(\Delta)\mathbf{F}(x)$$

Definition (Tangent Bundle Convolutional Filter)

The tangent bundle filter with impulse response $\tilde{h} : \mathbb{R}^+ \to \mathbb{R}$, denoted as **h**, is given by

$$\mathsf{G}(x) = (\mathsf{hF})(x) := (\tilde{h} \star_{\mathcal{TM}} \mathsf{F})(x) := \int_0^\infty \tilde{h}(t) \mathsf{U}(x, t) \mathrm{d}t,$$

where $\tilde{h}_{\star,M}F$ is the manifold convolution of \tilde{h} and F, U(x, t) is the solution of the heat equation

Injecting the heat equation solution, we can express the convolution with a parametric map

$$\mathbf{G}(x) = (\mathbf{hF})(x) = \int_0^\infty \tilde{h}(t)e^{-t\Delta}\mathbf{F}(x)dt = \mathbf{h}(\Delta)\mathbf{F}(x)$$

• We project the convolution input and output functions onto the eigenvectorfields ϕ_i

$$\left[\hat{G}\right]_{i} = \langle \mathbf{G}, \boldsymbol{\phi}_{i} \rangle = \int_{0}^{\infty} \tilde{h}(t) e^{-t\lambda_{i}} \mathrm{d}t \left[\hat{F}\right]_{i}$$

Definition (Frequency Response)

Given a tangent bundle filter $h(\Delta)$, the frequency response of this filter can be written as

$$\hat{h}(\lambda) = \int_0^\infty \tilde{h}(t) e^{-t\lambda} \mathrm{d}t$$

• The manifold filter $\mathbf{h}(\Delta)$ is pointwise in the frequency domain as $[\hat{G}]_i = \hat{h}(\lambda_i)[\hat{\mathbf{F}}]_i$

• We project the convolution input and output functions onto the eigenvectorfields ϕ_i

$$\left[\hat{G}\right]_{i} = \langle \mathbf{G}, \boldsymbol{\phi}_{i} \rangle = \int_{0}^{\infty} \tilde{h}(t) e^{-t\lambda_{i}} \mathrm{d}t \left[\hat{F}\right]_{i}$$

Definition (Frequency Response)

Given a tangent bundle filter $h(\Delta)$, the frequency response of this filter can be written as

$$\hat{h}(\lambda) = \int_0^\infty \tilde{h}(t) e^{-t\lambda} \mathrm{d}t$$

• The manifold filter $\mathbf{h}(\Delta)$ is pointwise in the frequency domain as $[\hat{G}]_i = \hat{h}(\lambda_i)[\hat{\mathbf{F}}]_i$

• We project the convolution input and output functions onto the eigenvectorfields ϕ_i

$$\left[\hat{G}\right]_{i} = \langle \mathbf{G}, \boldsymbol{\phi}_{i} \rangle = \int_{0}^{\infty} \tilde{h}(t) e^{-t\lambda_{i}} \mathrm{d}t \left[\hat{F}\right]_{i}$$

Definition (Frequency Response)

Given a tangent bundle filter $h(\Delta)$, the frequency response of this filter can be written as

$$\hat{h}(\lambda) = \int_0^\infty \tilde{h}(t) e^{-t\lambda} \mathrm{d}t$$

The manifold filter $\mathbf{h}(\Delta)$ is pointwise in the frequency domain as $[\hat{G}]_i = \hat{h}(\lambda_i)[\hat{F}]_i$

🛜 Penn

• We project the convolution input and output functions onto the eigenvectorfields ϕ_i

$$\left[\hat{G}\right]_{i} = \langle \mathbf{G}, \boldsymbol{\phi}_{i} \rangle = \int_{0}^{\infty} \tilde{h}(t) e^{-t\lambda_{i}} \mathrm{d}t \left[\hat{F}\right]_{i}$$

Definition (Bandlimited tangent bundle signal)

A tangent bundle signal is defined as λ_M -bandlimitd with $\lambda_M > 0$ if $[\hat{F}]_i = 0$ for all i such that $\lambda_i > \lambda_M$.

• The manifold filter $\mathbf{h}(\Delta)$ is pointwise in the frequency domain as $[\hat{G}]_i = \hat{h}(\lambda_i)[\hat{\mathbf{F}}]_i$

- Each of the layer is composed of
 - Tangent Bundle convolutions $h(\Delta)$
 - Pointwise nonlinearities σ
- **b** Define the learnable parameter set in $h(\Delta)$ as \mathcal{H}
- **•** TNN can be written as a map $\mathbf{Y} = \Psi(\mathcal{H}, \Delta, \mathbf{F})$

- Each of the layer is composed of
 - Tangent Bundle convolutions $h(\Delta)$
 - Pointwise nonlinearities σ
- **b** Define the learnable parameter set in $h(\Delta)$ as \mathcal{H}
- TNN can be written as a map $\mathbf{Y} = \Psi(\mathcal{H}, \Delta, \mathbf{F})$

- Each of the layer is composed of
 - Tangent Bundle convolutions $h(\Delta)$
 - Pointwise nonlinearities σ
- Define the learnable parameter set in $h(\Delta)$ as \mathcal{H}
- TNN can be written as a map $\mathbf{Y} = \Psi(\mathcal{H}, \Delta, \mathbf{F})$

- Each of the layer is composed of
 - Tangent Bundle convolutions $h(\Delta)$
 - Pointwise nonlinearities σ
- Define the learnable parameter set in $h(\Delta)$ as \mathcal{H}
- **>** TNN can be written as a map $\mathbf{Y} = \Psi(\mathcal{H}, \Delta, \mathbf{F})$

- A cellular sheaf over an undirected graph consists of an assignment of a vector space to each node and edge in the graph and a map between these spaces for each incident node-edge pair
- Given an undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, with $|\mathcal{V}| = n$, a cellular sheaf $\mathcal{TM}_n = (\mathcal{G}, \mathcal{F})$ is:
 - A vector space $\mathcal{F}(v)$ for each $v \in \mathcal{V}$. We refer to these vector spaces as nodes stalks
 - A vector space $\mathcal{F}(e)$ for each $e \in \mathcal{E}$. We refer to these vector spaces as edges stalks
 - A linear mapping V^T_{v,e}: F(v) → F(e) for each incident v ≤ e node-edge pair. We refer to these mappings as restriction maps
- ▶ All the spaces associated with the nodes of the graph form the space of sheaf signals $\mathcal{L}^2(\mathcal{TM}_n)$
- The Sheaf Laplacian of a sheaf *TM_n* is a linear mapping Δ_n : L²(*TM_n*) → L²(*TM_n*) defined node-wise. In particular, given a sheaf signal f_n, it holds:

$$(\Delta_n \mathbf{f}_n)(v) = \sum_{v,u \leq e} \mathbf{V}_{v,e}^T (\mathbf{V}_{v,e} \mathbf{f}_n(v) - \mathbf{V}_{u,e} \mathbf{f}_n(u))$$

In this work, we focus on orthogonal cellular sheaves, i.e. sheaves with orthogonal restriction maps and stalks with same dimension d

- ► Orthogonal Cellular Sheaves connecting the points can capture the geometric structure → they can be seen as discretized manifolds and approximated tangent bundles
- $\mathcal{X} = \{x_1, x_2, \dots, x_n\} \subset \mathbb{R}^p$ are *n* points sampled uniformly over the manifold \mathcal{M}
- We first build a geometric weighted graph connecting points x_i and x_j with weigts:

$$w_{i,j} = \exp\left(\frac{||x_i - x_j||^2}{\sqrt{\epsilon}}\right) \mathbb{I}\left(0 < ||x_i - x_j||^2 \le \sqrt{\epsilon}\right)$$

► The graph is not sufficient to correctly approximate the manifold and its tangent bundle → we need to equip it with nodes stalks, edge stalks and restriction maps

👁 Penn

- ► Orthogonal Cellular Sheaves connecting the points can capture the geometric structure → they can be seen as discretized manifolds and approximated tangent bundles
- $\mathcal{X} = \{x_1, x_2, \dots, x_n\} \subset \mathbb{R}^p$ are *n* points sampled uniformly over the manifold \mathcal{M}
- We first build a geometric weighted graph connecting points x_i and x_j with weights:

$$w_{i,j} = \exp\left(\frac{||x_i - x_j||^2}{\sqrt{\epsilon}}
ight)\mathbb{I}\left(0 < ||x_i - x_j||^2 \le \sqrt{\epsilon}
ight)$$

► The graph is not sufficient to correctly approximate the manifold and its tangent bundle → we need to equip it with nodes stalks, edge stalks and restriction maps

- ▶ We assign to each node *i* an orthogonal transformation $\mathbf{O}_i \in \mathbb{R}^{p \times d}$ computed via a local PCA procedure (from "Vector diffusion maps and the Connection Laplacian", Singer, Wu, 2012)
- O_i is a basis of the *i*-th node stalk and represents an approximation of a basis of the tangent space $\mathcal{T}_{x_i}\mathcal{M}$
- ▶ The restriction maps of the edge (i, j) are given by the SVD $\mathbf{M}_{i,j}$ and right $\mathbf{V}_{i,j}^{\mathsf{T}}$ of $\mathbf{O}_i^{\mathsf{T}} \mathbf{O}_j$
- ▶ $\mathbf{O}_{i,j} = \mathbf{M}_{i,j} \mathbf{V}_{i,j}^{\mathsf{T}}$ represents an approximated transport operator from x_i to x_j

- ▶ We assign to each node *i* an orthogonal transformation $\mathbf{O}_i \in \mathbb{R}^{p \times d}$ computed via a local PCA procedure (from "Vector diffusion maps and the Connection Laplacian", Singer, Wu, 2012)
- O_i is a basis of the *i*-th node stalk and represents an approximation of a basis of the tangent space $\mathcal{T}_{x_i}\mathcal{M}$
- ▶ The restriction maps of the edge (i, j) are given by the SVD $\mathbf{M}_{i,j}$ and right $\mathbf{V}_{i,j}^{\mathsf{T}}$ of $\mathbf{O}_i^{\mathsf{T}} \mathbf{O}_j$
- \triangleright **O**_{*i*,*j*} = **M**_{*i*,*j*}**V**^{*T*}_{*i*,*j*} represents an approximated transport operator from x_i to x_j

- ▶ We assign to each node *i* an orthogonal transformation $\mathbf{O}_i \in \mathbb{R}^{p \times d}$ computed via a local PCA procedure (from "Vector diffusion maps and the Connection Laplacian", Singer, Wu, 2012)
- O_i is a basis of the *i*-th node stalk and represents an approximation of a basis of the tangent space $\mathcal{T}_{x_i}\mathcal{M}$
- ▶ The restriction maps of the edge (i, j) are given by the SVD $\mathbf{M}_{i,j}$ and right $\mathbf{V}_{i,j}^{\mathsf{T}}$ of $\mathbf{O}_i^{\mathsf{T}}\mathbf{O}_j$
- ▶ $\mathbf{O}_{i,j} = \mathbf{M}_{i,j} \mathbf{V}_{i,j}^{\mathsf{T}}$ represents an approximated transport operator from x_i to x_j

▶ We build block matrix $\mathbf{S} \in \mathbb{R}^{nd \times nd}$ and a diagonal block matrix $\mathbf{D} \in \mathbb{R}^{nd \times nd}$ with blocks defined as

$$\mathbf{S}_{i,j} = w_{i,j} \widetilde{\mathbf{D}}_i^{-1} \mathbf{O}_{i,j} \widetilde{\mathbf{D}}_j^{-1}, \quad \mathbf{D}_{i,i} = \mathrm{ndeg}(\mathrm{i}) \mathbf{I}_d,$$

where $\widetilde{\mathsf{D}}_i = \deg(i)\mathsf{I}_d$, $\deg(i) = \sum_j w_{i,j}$, and $\operatorname{ndeg}(i) = \sum_j w_{i,j}/(\deg(i)\deg(j))$

Finally, the (normalized) Sheaf Laplacian is the following block matrix

$$\Delta_n = \epsilon^{-1} \big(\mathbf{D}^{-1} \mathbf{S} - \mathbf{I} \big) \in \mathbb{R}^{nd \times nd}$$

▶ The Sheaf Laplacians Δ_n is proved to converge to the Connection Laplacian of manifold \mathcal{M}

▶ We build block matrix $\mathbf{S} \in \mathbb{R}^{nd \times nd}$ and a diagonal block matrix $\mathbf{D} \in \mathbb{R}^{nd \times nd}$ with blocks defined as

$$\mathbf{S}_{i,j} = w_{i,j} \widetilde{\mathbf{D}}_i^{-1} \mathbf{O}_{i,j} \widetilde{\mathbf{D}}_j^{-1}, \quad \mathbf{D}_{i,i} = \mathrm{ndeg}(\mathrm{i}) \mathbf{I}_d,$$

where $\widetilde{\mathbf{D}}_i = \deg(i)\mathbf{I}_d$, $\deg(i) = \sum_j w_{i,j}$, and $\operatorname{ndeg}(i) = \sum_j w_{i,j}/(\deg(i)\deg(j))$

Finally, the (normalized) Sheaf Laplacian is the following block matrix

$$\Delta_n = \epsilon^{-1} \left(\mathbf{D}^{-1} \mathbf{S} - \mathbf{I} \right) \in \mathbb{R}^{nd imes nd}$$

• The Sheaf Laplacians Δ_n is proved to converge to the Connection Laplacian of manifold \mathcal{M}

 \blacktriangleright In our context, a sheaf signal f_n is defined as a sampled version of a tangent bundle signal **F**

$$\begin{split} \mathbf{f}_n &= \mathbf{\Omega}_n^{\mathcal{X}} \mathbf{F} \in \mathbb{R}^{nd}, \\ \mathbf{f}_n(x_i) &:= [\mathbf{f}_n]_{((i-1)d+1):(i+1)d} = \mathbf{O}_i^{\ T} \mathbf{i} \mathbf{F}(x_i), x_i \in \mathcal{X} \end{split}$$

We can define a discrete tangent bundle filter as

$$\mathbf{g}_n = \int_0^\infty \widetilde{h}(t) e^{t\Delta_n} \mathrm{d}t \mathbf{f}_n = \mathbf{h}(\Delta_n) \mathbf{f}_n \in \mathbb{R}^{nd}$$

We can define a discretized space tangent bundle neural network (D-TNN) as the stack of L layers:

$$\mathbf{y}_n = \sigma\left(\mathbf{h}(\Delta_n)\mathbf{f}_n\right)$$

• D-TNN can be written as a map
$$\mathbf{y}_n = \mathbf{\Psi}(\mathcal{H}, \Delta_n, \mathbf{f}_n)$$

 \blacktriangleright In our context, a sheaf signal f_n is defined as a sampled version of a tangent bundle signal **F**

$$\begin{split} \mathbf{f}_n &= \mathbf{\Omega}_n^{\mathcal{X}} \mathbf{F} \in \mathbb{R}^{nd}, \\ \mathbf{f}_n(x_i) &:= [\mathbf{f}_n]_{((i-1)d+1):(i+1)d} = \mathbf{O}_i^{\ T} \mathbf{i} \mathbf{F}(x_i), x_i \in \mathcal{X} \end{split}$$

We can define a discrete tangent bundle filter as

$$\mathbf{g}_n = \int_0^\infty \widetilde{h}(t) e^{t\Delta_n} \mathrm{d}t \mathbf{f}_n = \mathbf{h}(\Delta_n) \mathbf{f}_n \in \mathbb{R}^{nd}$$

We can define a discretized space tangent bundle neural network (D-TNN) as the stack of L layers:

$$\mathbf{y}_n = \sigma\left(\mathbf{h}(\Delta_n)\mathbf{f}_n\right)$$

• D-TNN can be written as a map
$$\mathbf{y}_n = \mathbf{\Psi}(\mathcal{H}, \Delta_n, \mathbf{f}_n)$$

 \blacktriangleright In our context, a sheaf signal f_n is defined as a sampled version of a tangent bundle signal F

$$\begin{split} \mathbf{f}_n &= \mathbf{\Omega}_n^{\mathcal{X}} \mathbf{F} \in \mathbb{R}^{nd}, \\ \mathbf{f}_n(x_i) &:= [\mathbf{f}_n]_{((i-1)d+1):(i+1)d} = \mathbf{O}_i^{\ T} \mathbf{i} \mathbf{F}(x_i), x_i \in \mathcal{X} \end{split}$$

We can define a discrete tangent bundle filter as

$$\mathbf{g}_n = \int_0^\infty \widetilde{h}(t) e^{t\Delta_n} \mathrm{d}t \mathbf{f}_n = \mathbf{h}(\Delta_n) \mathbf{f}_n \in \mathbb{R}^{nd}$$

We can define a discretized space tangent bundle neural network (D-TNN) as the stack of L layers:

$$\mathbf{y}_n = \sigma\left(\mathbf{h}(\Delta_n)\mathbf{f}_n\right)$$

• D-TNN can be written as a map $\mathbf{y}_n = \mathbf{\Psi}(\mathcal{H}, \Delta_n, \mathbf{f}_n)$

Theorem (Convergence of D-TNN to TNN)

Let $\Psi(\mathcal{H}, \cdot, \cdot)$ be the output of a neural network with *L* layers parameterized by the operator Δ of \mathcal{TM} (TNN) or by the discrete operator Δ_n of \mathcal{TM}_n (D-TNN). If:

- \blacktriangleright the frequency response of filters in ${\cal H}$ are non-amplifying and Lipschitz continuous
- **F** and $\Omega_n^{\mathcal{X}} \mathbf{F}$ are bandlimited tangent bundle and sheaf signals, respectively
- The kernel scale $\epsilon = n^{-2/(d+4)}$

then it holds that:

$$\lim_{n\to\infty} ||\Psi(\mathcal{H},\Delta_n,\mathbf{f}_n) - \Omega_n^{\mathcal{X}}\Psi(\mathcal{H},\Delta,\mathbf{F})||_{\mathcal{TM}_n} = 0 \text{ in probability.}$$

Discretization in the Time Domain

- **•** Discretize function $\tilde{h}(t)$ in the continuous time domain with a fixed sampling interval T_s
- ▶ Replace the filter response function with a series of coefficients $h_k = \tilde{h}(kT_s)$, k = 0, 1, 2...
- Fix a finite number of K samples over the time horizon $\mathbf{h}(\Delta)\mathbf{F}(x) = \sum_{k=0}^{K-1} h_k e^{-k\Delta} \mathbf{F}(x)$
- Inject the time discretized filter on the discretized manifold:

$$\mathbf{g}_n = \mathbf{h}(\Delta_n)\mathbf{f}_n = \sum_{k=0}^{K-1} h_k e^{-k\Delta_n} \mathbf{f}_n$$

▶ The discretized space-time TNN (DD-TNN) is then given by (suppose multiple inputs/outputs):

$$\mathbf{Y}_n = \sigma \left(\sum_{k=1}^{K} \left(e^{\Delta_n} \right)^k \mathbf{F}_n \mathbf{H}_k \right)$$

DD-TNN are a novel principled variant of Sheaf Neural Networks!

Discretization in the Time Domain

- **•** Discretize function $\tilde{h}(t)$ in the continuous time domain with a fixed sampling interval T_s
- ▶ Replace the filter response function with a series of coefficients $h_k = \tilde{h}(kT_s)$, k = 0, 1, 2...
- Fix a finite number of K samples over the time horizon $\mathbf{h}(\Delta)\mathbf{F}(x) = \sum_{k=0}^{K-1} h_k e^{-k\Delta}\mathbf{F}(x)$
- Inject the time discretized filter on the discretized manifold:

$$\mathbf{g}_n = \mathbf{h}(\Delta_n)\mathbf{f}_n = \sum_{k=0}^{K-1} h_k e^{-k\Delta_n} \mathbf{f}_n$$

▶ The discretized space-time TNN (DD-TNN) is then given by (suppose multiple inputs/outputs):

$$\mathbf{Y}_n = \sigma \left(\sum_{k=1}^{K} \left(e^{\Delta_n} \right)^k \mathbf{F}_n \mathbf{H}_k \right)$$

DD-TNN are a novel principled variant of Sheaf Neural Networks!

▶ Replace the filter response function with a series of coefficients $h_k = \tilde{h}(kT_s)$, k = 0, 1, 2...

Fix a finite number of K samples over the time horizon $\mathbf{h}(\Delta)\mathbf{F}(x) = \sum_{k=0}^{K-1} h_k e^{-k\Delta} \mathbf{F}(x)$

Inject the time discretized filter on the discretized manifold:

$$\mathbf{g}_n = \mathbf{h}(\Delta_n)\mathbf{f}_n = \sum_{k=0}^{K-1} \mathbf{h}_k e^{-k\Delta_n} \mathbf{f}_n$$

The discretized space-time TNN (DD-TNN) is then given by (suppose multiple inputs/outputs):

$$\mathbf{Y}_n = \sigma \left(\sum_{k=1}^{K} \left(e^{\Delta_n} \right)^k \mathbf{F}_n \mathbf{H}_k \right)$$

DD-TNN are a novel principled variant of Sheaf Neural Networks!

▶ Replace the filter response function with a series of coefficients $h_k = \tilde{h}(kT_s)$, k = 0, 1, 2...

Fix a finite number of K samples over the time horizon $\mathbf{h}(\Delta)\mathbf{F}(x) = \sum_{k=0}^{K-1} h_k e^{-k\Delta} \mathbf{F}(x)$

Inject the time discretized filter on the discretized manifold:

$$\mathbf{g}_n = \mathbf{h}(\Delta_n)\mathbf{f}_n = \sum_{k=0}^{K-1} \frac{h_k}{k} e^{-k\Delta_n} \mathbf{f}_n$$

The discretized space-time TNN (DD-TNN) is then given by (suppose multiple inputs/outputs):

$$\mathbf{Y}_n = \sigma \left(\sum_{k=1}^{K} \left(e^{\Delta_n}
ight)^k \mathbf{F}_n \mathbf{H}_k
ight)$$

DD-TNN are a novel principled variant of Sheaf Neural Networks!

We assess the consistency of the proposed framework by designing a denoising task of a tangent vector field over the unit 2-sphere

- We assess the consistency of the proposed framework by designing a denoising task of a tangent vector field over the unit 2-sphere
- We uniformly sample the sphere on *n* points $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$
- \blacktriangleright We add AWGN with variance τ^2 obtaining a noisy field
- We compare DD-TNNs and Manifold Neural Networks (MNNs), obtained by discretizations of the Laplace-Beltrami operator (thus, without taking into account the bundle structure)

- We assess the consistency of the proposed framework by designing a denoising task of a tangent vector field over the unit 2-sphere
- We uniformly sample the sphere on *n* points $\mathcal{X} = {\mathbf{x}_1, \dots, \mathbf{x}_n}$
- \blacktriangleright We add AWGN with variance τ^2 obtaining a noisy field

		$ au = 10^{-2}$	$ au=5\cdot10^{-2}$	$ au = 1 \cdot 10^{-1}$
n = 200	DD-TNN	$2\cdot\mathbf{10^{-4}}\pm1.6\cdot10^{-5}$	${\bf 4.9}\cdot{\bf 10^{-3}}\pm2.4\cdot10^{-4}$	$1.9 \cdot 10^{-2} \pm 1.3 \cdot 10^{-3}$
	MNN	$2.9\cdot 10^{-4}\pm 1.5\cdot 10^{-5}$	$7\cdot 10^{-3}\pm 2.8\cdot 10^{-4}$	$2.9\cdot 10^{-2}\pm 1.5\cdot 10^{-3}$
n = 800	DD-TNN	$2 \cdot 10^{-4} \pm 5.7 \cdot 10^{-6}$	$\boldsymbol{5}\cdot\boldsymbol{10^{-3}}\pm1.2\cdot10^{-4}$	$1.9 \cdot 10^{-2} \pm 4.6 \cdot 10^{-4}$
	MNN	$2.8\cdot 10^{-4}\pm 8.7\cdot 10^{-6}$	$7.3\cdot 10^{-3}\pm 1.7\cdot 10^{-4}$	$2.9\cdot 10^{-2}\pm 6.9\cdot 10^{-4}$

Table: MSE on the denoising task

- This is the first work to introduce a signal processing framework for signals defined on tangent bundles of Riemann manifolds via the Connection Laplacian
- The presented discretization procedure and convergencence result explicitly link the manifold domain with cellular sheaves
- In future work, we will investigate more general classes of cellular sheaves that approximate unions of manifolds
- We believe our perspective on TNNs could shed further light on challenging problems in graph neural networks such as heterophily, over-squashing, or transferability

My Linkedin https://www.linkedin.com/in/claudio-battiloro-b4390b175/ and Twitter https://twitter.com/ClaBat9:

Renn Renn