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What is deep learning?

Deep Learning

~1998-2020: ConvNets dominate vision
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2020: Transformers (from NLP) dominate vision

Vision Transformer (ViT)
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A Informal: Set of modular components combined/trained for a task
A Advances in models = new components
[ Very successful in practice (often surprising which choices work)



Graph based view of deep learning

1 Some universal ideas: Hierarchy, Invariances
A Current data-driven analysis of deep learning limited to
d End-performance (accuracy) or to single model
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A Graphs abstract changes in dimensions, architecture, modality
1 Geometric comparison across models and layers



Overview

d Neighborhood = Non-negative sparse approximation
3 Understanding deep learning models
d Insight 1: Interpolation vs Model Size

d Insight 2: Geometry of Self-supervised Models



How to define a neighborhood?
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d First step in graph based analysis, non-parametric estimation
d Definition impacts characterization (think “k” in kNN)
3 Need: A principled formulation that is adaptive to data



Sparse Signal Approximation

Idea: Represent input using few elements (atoms) from a dictionary
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coeff.
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Want: Each selected element to represent “new” information

Query Dictionary




Neighborhood = Sparse signal approximation
*(non-negative)
Setup:

d Given: Kernel similarity (€ [O, 1] - Normalized kernels)
d Form a dictionary based on kernel representation of data.
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Neighborhood = Sparse signal approximation
*(non-negative)
Setup:

d Given: Kernel similarity (€ [0, 1] - Normalized kernels)
d Form a dictionary based on kernel representation of data.

Query @ Goal Data Wfigol;ts @ k-NN, e-Neighborhood: Thresholding
} - Select “k” atoms with max ¢47¢a
$q ~ B O X |||| |||| - Let S = selected atoms
sparse coding - Optimal only if ®sis orthogonal
e, 7o =0
Pq P 2] - Not the case in general

Is thresholding the best we can achieve?



Non-negative basis pursuit

d Select atoms such that residue is represented at each step
d  Optimize selected atoms so that residue is orthogonal

Matching Pursuit (MP)

Greedy Basis Compute 0. = b.Th
Selection Pursuit Residue R e
max (a¢res Pres = PaOA- g Orthogonal Matching Pursuit (OMP)
Oa = argminexo || g - ©a O ||?
Stopping Criteria:
1. Approximation error small Stagewise Orthogonal Matching Pursuit
2. No atom with ¢.Tdres=> 0 Greedy selection: Select all atoms above threshold

Leads to adaptive, optimal (OMP), sparse neighborhood definition

Cons: Expensive iterative search. Does not leverage problem setup



Non-Negative Kernel regression (NNK)

d Adapt dictionary for a query by using only a relevant subset S
[ E.g. kNN, Approximate neighbors

[ Constrained optimization for residue orthogonality

[ Equivalent to 1-stage OMP
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Runtime: OWd|S|)+ O(|S|*)



Geometry: Kernel Ratio Interval (KRI)

NNK construction depends on the relative position* of data

*metric on (i, j)

NNK determines neighbors based on hyperplanes and polytopes



NNK graphs in deep embedding spaces

[ Manifold metrics comparable across models and architectures

Data X Model Feature space

(Embedded) Manifold

Sample v

NNK polytope

A NNK for extracting manifold properties
A No. of NNK neighbors < Intrinsic dimension
A NNK polytope diameter < Invariance
A Polytope complexitye Embedding space complexity

[ Stability, Invariance via augmentations (perturbation of data)



Datasets
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CIFAR10: Train (50k), Test (10k)
10 class

ImageNet: Train (1.2M), Val (50k)
1000 class



Revisiting interpolative estimators

[ Neural networks are trained to zero loss (Interpolative)
[ Can fit any data given time and capacity (Zhang "17)
A Can generalize* even when data is noisy

A Involves complex parametric / classification boundary

A Graph: Empirical, local characterization of classification space



Classification performance: KNN vs NNK

d Setup: Classification of imagnet using embeddings from encoder
[  Self-supervised learning model: DINO ‘21
d  Plot: kNN vs NNK performance for different choices of “k”
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NNK interpolation on ImageNet achieves 79.9% accuracy

Fine-tuned softmax classifier on same model 79.7%



Interpolation vs Model size

[ Setup: ResNet 18 with variable block size (Model size)

d  Observe complexity of local neighborhood

d  # NNK polytopes with at least one neighbor with different label
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A NNK classification closely approximates the model performance
A Model size: From weighted interpolation to class homogeneity



Case study: Geometry of Self-Supervised learning

—

4 Feature Equal
Extraction /

Encoder Projector

3 Informal: Learning to be invariant to known prior (e.g. rotation)
A Several SSL models - which model to use for downstream task?
[  How invariant is the encoder to an augmentation (perturbation)?
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Setup: Rotation invariance of SSL models

Polytope
diameter

Feed an ImageNet image and its rotations as inputs to a model
Obtain the NNK neighbors of inputs in encoder space

Measure NNK polytope diameter

d Max. distance between NNK neighbors (Range: [0, 2])
Invariant < small diameter, Not invariant < large diameter



Results: Rotation invariance of SSL
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A Rotation independent task: Classification
A More invariant < Better performance

1 Rotation dependent task: Surface normal estimation
1 Less invariant < Better estimation

Measured invariance to rotation correlates with downstream task



Summary

A Graph tools: Geometric understanding of deep learning
1 Properties of model beyond test accuracy
A Applicable to other modalities & architectures
A Explainability, Stability analysis, Model transfer

Resources (papers, code): shekkizh.github.io
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