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❏ Informal: Set of modular components combined/trained for a task
❏ Advances in models = new components
❏ Very successful in practice (often surprising which choices work)

What is deep learning?

PC: Preetum Nakkiran 



Graph based view of deep learning 

❏ Graphs abstract changes in dimensions, architecture, modality
❏ Geometric comparison across models and layers

❏ Some universal ideas:  Hierarchy, Invariances
❏ Current data-driven analysis of deep learning limited to  

❏ End-performance (accuracy) or to single model 



Overview

❏ Neighborhood ⇋ Non-negative sparse approximation

❏ Understanding deep learning models 

❏ Insight 1: Interpolation vs Model Size

❏ Insight 2: Geometry of Self-supervised Models



How to define a neighborhood?

❏ First step in graph based analysis, non-parametric estimation
❏ Definition impacts characterization (think “k” in kNN)
❏ Need: A principled  formulation that is adaptive to data



Sparse Signal Approximation

Idea: Represent input using few elements (atoms) from a dictionary

Want: Each selected element to represent “new” information 



Neighborhood ⇋ Sparse signal approximation
*(non-negative)

Setup:
❏ Given: Kernel similarity (∈ [0, 1] - Normalized kernels)
❏ Form a dictionary based on kernel representation of data.



Neighborhood ⇋ Sparse signal approximation
*(non-negative)

Setup:
❏ Given: Kernel similarity (∈ [0, 1] - Normalized kernels)
❏ Form a dictionary based on kernel representation of data.

Is thresholding the best we can achieve?



Non-negative basis pursuit

❏ Select atoms such that residue is represented at each step
❏ Optimize selected atoms so that residue is orthogonal

Leads to adaptive, optimal (OMP), sparse neighborhood definition

Cons: Expensive iterative search. Does not leverage problem setup



Non-Negative Kernel regression (NNK)
❏ Adapt dictionary for a query by using only a relevant subset S

❏ E.g. kNN, Approximate neighbors
❏ Constrained optimization for residue orthogonality
❏ Equivalent to 1-stage OMP



Geometry: Kernel Ratio Interval (KRI)

NNK determines neighbors based on hyperplanes and polytopes

NNK construction depends on the relative position* of data
*metric on (i, j)



NNK graphs in deep embedding spaces

❏ NNK for extracting manifold properties
❏ No. of NNK neighbors ⟺ Intrinsic dimension 
❏ NNK polytope diameter ⟺ Invariance
❏ Polytope complexity⟺ Embedding space complexity

❏ Stability, Invariance via augmentations (perturbation of data)

❏ Manifold metrics comparable across models and architectures



Datasets

CIFAR10: Train (50k), Test (10k)
10 class

ImageNet: Train (1.2M), Val (50k)
1000 class



Revisiting interpolative estimators

❏ Neural networks are trained to zero loss (Interpolative)
❏ Can fit any data given time and capacity (Zhang ’17)
❏ Can generalize* even when data is noisy

❏ Involves complex parametric / classification boundary

❏ Graph: Empirical, local characterization of classification space 



Classification performance: kNN vs NNK

❏ Setup: Classification of imagnet using embeddings from encoder 
❏ Self-supervised learning model: DINO ‘21

❏ Plot: kNN vs NNK performance for different choices of “k”

NNK interpolation on ImageNet achieves 79.9% accuracy

Fine-tuned softmax classifier on same model 79.7%



Interpolation vs Model size

❏ Setup: ResNet 18 with variable block size (Model size)
❏ Observe complexity of local neighborhood
❏ # NNK polytopes with at least one neighbor with different label

❏ NNK classification closely approximates the model performance
❏ Model size: From weighted interpolation to class homogeneity



Case study: Geometry of Self-Supervised learning 

❏ Informal: Learning to be invariant to known prior (e.g. rotation)
❏ Several SSL models - which model to use for downstream task?
❏ How invariant is the encoder to an augmentation (perturbation)? 



Setup: Rotation invariance of SSL models 

❏ Feed an ImageNet image and its rotations as inputs to a model
❏ Obtain the NNK neighbors of inputs in encoder space
❏ Measure NNK polytope diameter 

❏ Max. distance between NNK neighbors (Range: [0, 2])
❏ Invariant ⟺ small diameter, Not invariant ⟺ large diameter 



Results: Rotation invariance of SSL 

❏ Rotation independent task: Classification
❏ More invariant ⟺ Better performance

❏ Rotation dependent task: Surface normal estimation
❏ Less invariant ⟺ Better estimation

Measured invariance to rotation correlates with downstream task



Summary

❏ Graph tools: Geometric understanding of deep learning
❏ Properties of model beyond test accuracy
❏ Applicable to other modalities & architectures
❏ Explainability, Stability analysis, Model transfer

Resources (papers, code): shekkizh.github.io
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