Decentralized Graph Based Filter Design Using Normalized Adjacency Matrix Yufan Fan and Marius Pesavento

TECHNISCHE UNIVERSITÄT DARMSTADT

Communications Systems Group Technische Universität Darmstadt

June 13, 2023 | Communication Systems Group | Y. Fan and M. Pesavento | 1

Graph Signal Processing Preliminaries

Figure: An undirected network \mathcal{G} with N = 10 nodes.

► $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where $\mathcal{V} = \{1, ..., N\}$ and $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ Adjacency matrix A, where Degree matrix D, where

$$a_{ij} = \begin{cases} 1 & \text{if } (i,j) \in \mathcal{E} \\ 0 & \text{otherwise} \end{cases} \qquad \qquad d_{ij} = \begin{cases} \sum_{j=1}^{N} a_{ij} & \text{if } i=j \\ 0 & \text{if } i \neq j \end{cases}$$

June 13, 2023 | Communication Systems Group | Y. Fan and M. Pesavento | 2

Graph Signal Processing Preliminaries

Figure: An undirected network \mathcal{G} with N = 10 nodes.

Incidence matrix **B**, where

$$b_{k\ell} = \begin{cases} 1 & \text{ if } k=i, \ell=j \\ -1 & \text{ if } k=j, \ell=i, \\ 0 & \text{ otherwise} \end{cases}$$

Combinatorial Graph Laplacian matrix L, where

$$L = D - A = BB^{\mathsf{T}}$$

Graph Filter

A linear shift-invariant finite impulse response (FIR) graph filter (GF) \hat{H} can be expressed as

$$\hat{\boldsymbol{H}} = h_0 \boldsymbol{S}^0 + h_1 \boldsymbol{S}^1 + \dots + h_M \boldsymbol{S}^M = \sum_{m=0}^M h_m \boldsymbol{S}^M, \quad (1)$$

where $h_m \in \mathbb{R}, m = 0, 1, ..., M$, denotes polynomial coefficients of the GF with filter order M, and S is the graph shift operator (GSO).

• The output y of the GF with respect to the graph signal x is $y = \hat{H}x$.

Graph Filter

- ► The eigendecomposition of the GSO: $S = U\Lambda U^{\mathsf{T}}$. Graph frequencies are *known* \rightarrow graph dependent GF \rightarrow graph in
 - customized design
 - high computation cost

Graph frequencies are unknown

- ightarrow graph independent GF
 - universal design
 - Iow computation cost
- Our goal: Design a graph dependent GF by finding graph frequencies in a fully decentralized manner.

Graph Shift Operator

Different choices of the GSO S for undirected graphs¹

GSO S	Expression	Properties
Adjacency Matrix	A	Symmetric, $\lambda_i \leq d_{\max}$
Normalized Adjacency	$oldsymbol{A}_{n} = oldsymbol{D}^{-rac{1}{2}}oldsymbol{A}oldsymbol{D}^{-rac{1}{2}}$	Symmetric, $\lambda_i \in [-1, 1]$
Combinatorial Laplacian	L = D - A	Symmetric, $\lambda_i \ge 0$
Normalized Laplacian	$oldsymbol{L}_{n} = oldsymbol{D}^{-rac{1}{2}} oldsymbol{L} oldsymbol{D}^{-rac{1}{2}}$	Symmetric, $\lambda_i \in [0, 2]$
Random Walk	$oldsymbol{L}_{\sf rw} = oldsymbol{I} - oldsymbol{D}^{-1}oldsymbol{A}$	Asymmetric, $\lambda_i \ge 0$

 λ_i denotes the *i*th largest eigenvalue.

¹For directed graphs, cf. A. Anis, A. Gadde, and A. Ortega, "Efficient Sampling Set Selection for Bandlimited Graph Signals Using Graph Spectral Proxies".

Normalized Adjacency Matrix

The mth power of the GSO can be expressed as

$$S^m = U\Lambda^m U^{\mathsf{T}}.$$
 (2)

 $\blacktriangleright \ |\mathsf{f}|\lambda_i| > 1 \rightarrow$

- amplification of intermediate graph signals
- potential round-off errors
- We propose to use the normalized adjacency matrix A_n as the GSO, whose eigenvalue can be found by

$$\lambda_i(\boldsymbol{A}_{\mathsf{n}}) = 1 - \lambda_{N+1-i}(\boldsymbol{L}_{\mathsf{n}}) \tag{3}$$

• Our goal: Estimate the eigenvalues of L_n in fully decentralized manner.

Decentralized Graph Frequency Estimation

Notice that the degree matrix D is diagonal, and $L = BB^{\mathsf{T}}$, we have

$$\boldsymbol{L}_{\mathsf{n}} = \boldsymbol{D}^{-\frac{1}{2}} \boldsymbol{B} (\boldsymbol{D}^{-\frac{1}{2}} \boldsymbol{B})^{\mathsf{T}}.$$
 (4)

Denote the columns of the matrix $D^{-rac{1}{2}}B$ as $x_i, i=1,\ldots,N_e$, i.e.,

$$\boldsymbol{D}^{-\frac{1}{2}}\boldsymbol{B} = [\boldsymbol{x}_1, \dots, \boldsymbol{x}_{N_e}], \tag{5}$$

where $N_e = |\mathcal{V}|$.

- ► Entries of x_i are available at corresponding nodes → x_i is the *i*th graph signal.
- The matrix L_n can be rewritten as a summation of rank-one modifications

$$\boldsymbol{L}_{\mathsf{n}} = \sum_{i=1}^{N_e} \boldsymbol{x}_i \boldsymbol{x}_i^{\mathsf{T}}. \tag{6}$$

Online Decentralized Eigendecomposition

- The eigenvalues of L_n can be iteratively estimated by examining all column vectors x_i.
- L_n can be expressed as

$$L_n(i) = L_n(i-1) + x_i x_i^{\mathsf{T}}, \quad i = 1, 2, \dots, N_e.$$
 (7)

where $\boldsymbol{L}_n(0) = \boldsymbol{0}$, and $\boldsymbol{L}_n(N_e) = \boldsymbol{L}_n$.

- Online Decentralized Eigendecomposition Algorithm.
 - Y. Fan, M. Trinh-Hoang, and M. Pesavento, "Decentralized Eigendecomposition for Online Learning over Graphs," in 2021 29th European Signal Processing Conference (EUSIPCO), Aug. 2021, pp. 1825–1829.
 - Y. Fan, M. Trinh-Hoang, C. E. Ardic, and M. Pesavento, "Decentralized Eigendecomposition for Online Learning over Graphs with Applications," no. arXiv:2209.01257, Sep. 2022.

Online Decentralized Eigendecomposition

- ► Assumption: the eigenvalue Λ(i − 1) and corresponding eigenvector matrix U(i − 1) of L_n(i − 1) are known.
- Known at the *j*th node: $\Lambda(i-1)$, *j*th row of U(i-1), and the *j*th entry of x_i .
- We have

$$\boldsymbol{U}(i-1)^{\mathsf{T}}\boldsymbol{L}_{n}(i)\boldsymbol{U}(i-1) = \boldsymbol{\Lambda}(i-1) + \boldsymbol{z}(i)\boldsymbol{z}(i)^{\mathsf{T}},$$
(8)

where

$$\boldsymbol{z}(i) = [z_1(i), \dots, z_N(i)]^{\mathsf{T}} = \boldsymbol{U}(i-1)^{\mathsf{T}} \boldsymbol{x}(i).$$
(9)

- Equation (9) can be realized by *network gossiping protocols*, e.g., the average consensus algorithm, the Push-Sum algorithm, the finite-time average consensus algorithm.
- Equation (8) can be realized by efficient implementation of the rational function approximation in each node locally.

Simulation Result

- A random Erdős-Rényi graph with N = 80 nodes.
- Push-Sum iterations 80.
- We design an ideal graph based low pass FIR GF using A_n , denoted as FIR-GDnA, to compute the average value of a random graph signal, i.e., $\bar{x} = \frac{\mathbf{1}^T x}{N}$.
- Filter order M = 12.
- Relative error

$$\eta = \frac{\|\boldsymbol{y} - \bar{\boldsymbol{x}}\|_2^2}{\|\bar{\boldsymbol{x}}\|_2^2}.$$
 (10)

Comparisons:

- FIR-GDL: graph based FIR using the combinatorial graph Laplacian matrix L
- FIR-GIDN: graph independent FIR based on the network size
- FIR-GIDM: graph independent FIR based on the maximum eigenvalue of L.

Frequency Responses

Frequency responses of graph dependent and graph independent FIR graph filters with order M = 12.

Relative Error Performance

Relative error performance of graph dependent and graph independent FIR graph filters with order M = 12.

Thank you very much!

June 13, 2023 | Communication Systems Group | Y. Fan and M. Pesavento | 14

