T-HyperGNNs: Hypergraph Neural Networks Via Tensor Representations Graph Signal Processing Workshop 2023

Fuli Wang, Karelia Pena-Pena, Wei Qian, Gonzalo R.Arce

University of Delaware, USA

June 12, 2023

University of Delaware, USA

Fuli Wang, Karelia Pena-Pena, Wei Qian, Gonzalo R.Arce T-HyperGNNs: Hypergraph Neural Networks Via Tensor Representations

Introduction

- Hypergraph Signal Shifting
- **•** T-Message Passing

Fuli Wang, Karelia Pena-Pena, Wei Qian, Gonzalo R.Arce T-HyperGNNs: Hypergraph Neural Networks Via Tensor Representations University of Delaware, USA

T-Message Passing

Experiment

Hypergraph

Graph VS Hypergraph

 $\begin{array}{ll} \textbf{A hypergraph } \textbf{H} = (V(\textbf{H}), E(\textbf{H})) \\ V(\textbf{H}) = \{\textbf{v}_1, ... \textbf{v}_N\} & \text{nodes } \bullet \\ E(\textbf{H}) = \{\textbf{e}_1, ... \textbf{e}_E\} & \text{hyperedges} \end{array}$

 $M = m.c.e(\mathbf{H}) = \max\{|\mathbf{e}_i| : \mathbf{e}_i \in E(\mathbf{H})\}$ maximum cardinality of the hyperedges

In the hypergraph example, $|V(\mathbf{H})|=7, \quad |E(\mathbf{H})|=4, \quad M=3$

A graph $\mathbf{G} = (V(\mathbf{G}), E(\mathbf{G}))$ is a uniform hypergraph where all edges have size 2 (M = 2).

Fuli Wang, Karelia Pena-Pena, Wei Qian, Gonzalo R.Arce T-HyperGNNs: Hypergraph Neural Networks Via Tensor <u>Representations</u> э

T-Message Passing

Experiment

Hypergraph Neural Networks (HyperGNNs)

Goal: Learn the representation function $\Phi : (\mathbf{H}, \mathbf{X}) \to \mathbb{R}$, where $\mathbf{H} = (V(\mathbf{H}), E(\mathbf{H}))$ is the hypergraph structure and \mathbf{X} is the signal

- Hypergraph signal shifting: $\mathbf{Y} = \phi_{shift}(\mathbf{X}, \mathbf{H})$
- hypergraph signal transformation: $\mathbf{Z}=\mathsf{MLP}_{\mathcal{W}}(\mathbf{Y})$

T-Message Passing

Experiment

Motivation of This Work

Hypergraph signal shifting is a well-defined operation in HGSP using tensors.

 Gama, F., et al. IEEE Signal Processing Magazine (2020) 	[2] Feng, Y., et al., AAAI (2019)
[3] Song, B., et al., Pattern Recognition (2021)	[4] Zhang, S., et al., IEEE Internet of Things Journal (2019)
[5] Pena, K., et al., IEEE Transactions on Signal and Information Processing over	Networks (2023)

Fuli Wang, Karelia Pena-Pena, Wei Qian, Gonzalo R.Arce

T-HyperGNNs: Hypergraph Neural Networks Via Tensor Representations

Introduction

Hypergraph Signal Shifting

• T-Message Passing

- ▲ ロ ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ④ 오 @

Fuli Wang, Karelia Pena-Pena, Wei Qian, Gonzalo R.Arce T-HyperGNNs: Hypergraph Neural Networks Via Tensor Representations University of Delaware, USA

T-Message Passing

Hypergraph Adjacency Tensor

A hypergraph $\mathbf{H} = (V(\mathbf{H}), E(\mathbf{H}))$ can be represented by an Mth-order N-dimensional Adjacency tensor $\mathcal{A} \in \mathbb{R}^{N^M}$.

$$a_{n_1,n_2,...,n_M} = \begin{cases} \frac{|\mathbf{e}|}{\alpha}, & \text{if } \mathbf{e} = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_c\} \in E(\mathbf{H}) \text{ forms a hyperedge} \\ 0 & \text{otherwise}, \end{cases}$$

where α is the total number of permutations for length-M edge e^{M} .

Zhang, S., et al. "Introducing hypergraph signal processing." IEEE Internet of Things Journal (2019).

▲日▼▲□▼▲田▼▲田▼ 回 ろんの

University of Delaware, USA

Fuli Wang, Karelia Pena-Pena, Wei Qian, Gonzalo R.Arce T-HyperGNNs: Hypergraph Neural Networks Via Tensor Representations Introduction

Hypergraph Signal Shifting

T-Message Passing

Experiment

Notation

Fuli Wang, Karelia Pena-Pena, Wei Qian, Gonzalo R.Arce

T-HyperGNNs: Hypergraph Neural Networks Via Tensor Representations

University of Delaware, USA

・ロト ・ 日 ト ・ ヨ ト ・

T-Message Passing

Experiment

Hypergraph Signals Modeling Interaction

- A hypergraph signal is an N-length vector of tubal scalars $\vec{\mathcal{X}} \in \mathbb{R}^{N \times 1 \times N}$
- Each tubal scalar $\mathbf{x}_{i,1}$ in $\vec{\mathcal{X}}$ is obtained from a one dimensional signal in the hypergraph $\mathbf{x} \in \mathbb{R}^N$ as

$$\mathbf{x}_{i,1} = \texttt{fold} \left(\begin{bmatrix} x_i x_1 \\ x_i x_2 \\ \vdots \\ x_i x_N \end{bmatrix} \right)$$

• D-dimensional hypergraph signal:

$$\begin{split} \mathcal{X} &= \texttt{stack}([\vec{\mathcal{X}_1}, ..., \vec{\mathcal{X}_D},], dim = 2) \\ \mathcal{X} &\in \mathbb{R}^{N \times D \times N} \end{split}$$

Zhang, S., et al. "Introducing hypergraph signal processing." IEEE Internet of Things Journal (2019).

Fuli Wang, Karelia Pena-Pena, Wei Qian, Gonzalo R.Arce T-HyperGNNs: Hypergraph Neural Networks Via Tensor Representations

T-Message Passing

Experiment

Hypergraph Signal Shifting

To do: Scale up the hypergraph signal shifting operation.

Fuli Wang, Karelia Pena-Pena, Wei Qian, Gonzalo R.Arce

T-HyperGNNs: Hypergraph Neural Networks Via Tensor Representations

University of Delaware, USA

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Geometric Meaning of the Hypergraph Signal Shifting

Hypergraph perspective: $\mathbf{Y} := \mathcal{A} \cdot \mathcal{X} = \sum_{k=1}^{N} \mathbf{A}^{(k)} \mathbf{X}^{(k)}$

Node perspective: $[\mathbf{Y}]_{i,d} = \sum_{j=1}^{N} \sum_{k=1}^{N} a_{ijk} x_{j_d} x_{k_d},$

Takeaway: Focusing on the connectivity of each node.

Fuli Wang, Karelia Pena-Pena, Wei Qian, Gonzalo R.Arce T-HyperGNNs: Hypergraph Neural Networks Via Tensor Representations ・ロト ・雪 ト ・ ヨ ト

∃ 900

T-Message Passing HyperGNNs

Idea: Neighboring nodes pass "message" to the central node

$$\mathbf{Y}]_{v} = \mathsf{AGGREGATE}(\{\mathbf{x}_{u}, \forall u \in \mathcal{N}(v)\}),$$

Fuli Wang, Karelia Pena-Pena, Wei Qian, Gonzalo R.Arce T-HyperGNNs: Hypergraph Neural Networks Via Tensor Representations Image: A matched by the second sec

T-Message Passing ●○○○

Introduction

Hypergraph Signal Shifting

3 T-Message Passing

Experiment
 Experiment

- ▲ ロ ト ▲ 国 ト ▲ 国 ト ▲ 国 ト つ Q @

Fuli Wang, Karelia Pena-Pena, Wei Qian, Gonzalo R.Arce T-HyperGNNs: Hypergraph Neural Networks Via Tensor Representations University of Delaware, USA

T-Message Passing ○●○○

T-Message Passing HyperGNNs Compressed Adjacency Tensor: Adjacency value table + Neighborhood table

Space complexity: Reduced from $\mathcal{O}(N^M)$ to $\mathcal{O}(N)$

Define the M-order incidence edge set and M-order neighborhood of v as

$$\begin{split} E^M(v) &= \{e^M | e \ni v\}, \\ \mathcal{N}^M(v) &= \{\pi(e^M(-v)) | \forall e^M \in E^M(v)\}, \end{split}$$

where $e^M(-v)$ refers to deleting exact one v element from e^M , and $\pi(\cdot)$ represents permutation of a sequence. E.g., For node v_1 ,

$$\begin{split} E^{M}(v_{1}) &= \\ \{\underbrace{[(v_{1}, v_{2}, v_{1}), (v_{1}, v_{2}, v_{2})]}_{e_{1}^{3}}, \underbrace{(v_{1}, v_{2}, v_{3})}_{e_{2}^{3}}\}, \\ \mathcal{N}^{M}(v_{1}) &= \{\pi(v_{2}, v_{1}), \pi(v_{2}, v_{2}), \pi(v_{2}, v_{3})\} \end{split}$$

Image: A match a ma

Fuli Wang, Karelia Pena-Pena, Wei Qian, Gonzalo R.Arce T-HyperGNNs: Hypergraph Neural Networks Via Tensor Representations University of Delaware, USA

T-Message Passing HyperGNNs

Aggregate with Compressed Adjacency Tensor:

E.g. $[\mathbf{Y}]_{n_1} = a_{e_1}(x_1x_2 + x_2x_1 + x_2^2) + a_{e_2}(x_2x_3 + x_3x_2) = \frac{2}{3}x_1x_2 + \frac{1}{3}x_2^2 + \frac{1}{3}x_2^$

Time complexity: Reduced from $\mathcal{O}(N^M)$ to $\mathcal{O}(Nd_{max})$, where d_{max} is the maximum degree of nodes.

University of Delaware, USA

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Fuli Wang, Karelia Pena-Pena, Wei Qian, Gonzalo R.Arce

T-HyperGNNs

From hypergraph signal shifting

- Performing signal transformation with learnable weights.
- Cascading multiple layers to form T-HyperGNNs.

$$\begin{bmatrix} \mathbf{X}^{(l+1)} = \sigma(\mathcal{A} \cdot \mathcal{X}^{(l)} \mathbf{W}^{(l)}), \\ \mathcal{X}^{(l)} = HGS(\mathbf{X}^{(l)}) \\ \mathbf{Y} = \mathcal{A} \cdot \mathcal{X} \\ \begin{bmatrix} \mathbf{Y} \end{bmatrix}_{v}^{(l)} = AGGREGATE(a_{e} \sum_{\pi(\cdot) \in \mathcal{N}^{M}(v)} \prod_{u \in \pi(\cdot)} (\mathbf{x}_{u}^{(l-1)})) \\ \mathbf{Y} = \mathcal{A} \cdot \mathcal{X} \\ \begin{bmatrix} \mathbf{Y} \end{bmatrix}_{v} = \sum_{e^{M} \in E^{M}(v)} a_{e} \sum_{\pi(\cdot) \in \mathcal{N}^{M}(v)} \prod_{u \in \pi(\cdot)} \mathbf{x}_{u} \\ a_{e} \sum_{\pi(\cdot) \in \mathcal{N}^{M}(v)} \prod_{u \in \pi(\cdot)} \mathbf{x}_{u} \\ \mathbf{Y} = \mathbf{X} \\ \begin{bmatrix} \mathbf{Y} \end{bmatrix}_{v} = \sum_{e^{M} \in E^{M}(v)} a_{e} \sum_{\pi(\cdot) \in \mathcal{N}^{M}(v)} \prod_{u \in \pi(\cdot)} \mathbf{x}_{u} \\ \mathbf{Y} = \mathbf{X} \\ \mathbf{Y} = \mathbf{X} \\ \mathbf{X} \\ \begin{bmatrix} \mathbf{Y} \end{bmatrix}_{v} = \mathbf{X} \\ \mathbf{Y} = \mathbf{Y} \\ \mathbf{Y} = \mathbf{Y} \\ \mathbf{Y} = \mathbf{Y} \\ \mathbf{Y} = \mathbf{X} \\ \mathbf{Y} = \mathbf{Y} \\ \mathbf{Y} = \mathbf{X} \\ \mathbf{Y} = \mathbf{Y} \\ \mathbf{Y} = \mathbf{Y} \\ \mathbf{Y} = \mathbf{X} \\ \mathbf{Y} = \mathbf{Y} \\ \mathbf{Y} \\ \mathbf{Y} \\ \mathbf{Y} = \mathbf{Y} \\ \mathbf{Y} \\ \mathbf{Y} \\ \mathbf{Y} = \mathbf{Y} \\ \mathbf{Y$$

Fuli Wang, Karelia Pena-Pena, Wei Qian, Gonzalo R.Arce

T-HyperGNNs: Hypergraph Neural Networks Via Tensor Representations

Introduction

- Hypergraph Signal Shifting
- **•** T-Message Passing
- Experiment

- * ロ * * 母 * * 目 * * 目 * * の < @

Fuli Wang, Karelia Pena-Pena, Wei Qian, Gonzalo R.Arce T-HyperGNNs: Hypergraph Neural Networks Via Tensor Representations University of Delaware, USA

Experiment

Experiment: Semi-supervised Node Classification

- Co-citation hypergraphs^[1]: Cora, Citeseer, Pubmed
- Co-authorship hypergraphs^[1]: Cora, DBLP

[1] Yadati, N., et al. "Hypergcn: A new method for training graph convolutional networks on hypergraphs." (2019)

Fuli Wang, Karelia Pena-Pena, Wei Qian, Gonzalo R.Arce T-HyperGNNs: Hypergraph Neural Networks Via Tensor Representations University of Delaware, USA

Experiment: Semi-supervised Node Classification

Method	Time		Cocitation	Coauthorship		
	$Complexity^{\star}$	Cora	Citeseer	Pubmed	Cora	DBLP
MLP	$\mathcal{O}(ND^2)$	48.23 ± 7.35	65.56 ± 1.48	73.89 ± 5.60	46.11±8.35	76.15 ± 7.26
HGNN ^[1] HyperGCN ^[2]	$\mathcal{O}(ND^2 + N^2D)$ $\mathcal{O}(ND^2 + N^2D + E\delta_e)$	70.59 ± 1.22 35.29 ± 1.24	73.89 ± 8.98 61.11 ± 1.53	82.22 ± 1.33 76.11 ± 1.40	66.94 ± 6.51 25.79 ± 6.43	93.08 ± 6.39 25.38 ± 1.29
HNHN ^[3]	$\mathcal{O}(ND^2 + NED + ED^2)$	69.41 ± 9.04	74.44 ± 9.69	77.22 ± 4.08	71.39 ± 5.56	93.85 ± 5.76
T-spatial T-MPHN	$\mathcal{O}(N^M D + N^{(M-1)} D^2)$ $\mathcal{O}(N D^2 + N \delta_v)$	$69.17 \pm 7.58 \\ \textbf{70.83} \pm \textbf{5.59}$	76.11 ± 7.05 77.22 ± 6.44	84.22 ± 3.26 93.33 ± 4.48	70.00 ± 6.01 72.78 ± 4.44	94.62 ± 2.93 95.38 \pm 2.10

[1] Feng, Y., et all. AAAI. (2019) [2] Yadati, N., et all. NIPS. (2019) [3] Dong, Y., et all. arXiv. (2020) \star Time complexity for one layer of HyperGNNs. δ_v is the maximum node degree, δ_e is the maximum edge degree. N is the number of nodes, E is the number of edges, and D is the hidden dimension.

Fuli Wang, Karelia Pena-Pena, Wei Qian, Gonzalo R.Arce T-HyperGNNs: Hypergraph Neural Networks Via Tensor Representations University of Delaware, USA

Experiment: Inductive 3D-object Detection

Method	Time		ModelNet40 ^[3]		NTU ^[4]			
	Complexity*	Seen	Unseen	Reduced (%)	Seen	Unseen	Reduced (%)	
MLP	$O(ND^2)$	96.13 ± 2.17	88.42 ± 1.41	8.72	94.51 ± 4.70	77.68 ± 4.46	17.81	
$HyperSAGE^{[1]}$	$\mathcal{O}(ND^2 + E\delta_e)$	97.55 ± 2.35	88.37 ± 2.66	10.39	97.33 ± 3.58	75.34 ± 1.04	22.59	
$UniSAGE^{[2]}$	$\mathcal{O}(ND^2 + N\delta_v)$	100.00 ± 0.00	92.62 ± 2.19	7.38	96.60 ± 1.43	81.05 ± 0.82	16.10	
T-MPHN	$\mathcal{O}(ND^2 + N\delta_v)$	100.00 ± 0.00	96.69 ± 3.22	3.31	100.00 ± 0.00	86.34 ± 2.17	13.66	

[1] Arya, D., et al. arXiv (2020) [2] Huang, J., et al. ijcai. (2021). [3] Wu, Z., et al. CVPR (2015) [4] Chen, D., et al. Wiley (2003). \star Time complexity for one layer of HyperGNNs. δ_v is the maximum node degree, δ_e is the maximum edge degree. N is the number of nodes, E is the number of edges, and D is the hidden dimension.

Fuli Wang, Karelia Pena-Pena, Wei Qian, Gonzalo R.Arce

T-HyperGNNs: Hypergraph Neural Networks Via Tensor Representations

• • • • • • • • • •

T-Message Passing

Variation of T-MPHN

Variation on Aggregation:

• Change the order of hypergraph *M* at different layers

• Change the aggregate function, e.g, Mean, attention weighted sum, etc

Variation on Combining:

- COMBINE = Concatenation $\mathbf{x}_{v}^{(l)} \leftarrow \sigma(\mathsf{MLP}^{(l)}([\mathbf{x}_{v}^{(l-1)}; [\mathbf{Y}]_{v}^{(l)}]))$
- COMBINE with skip-connection $\mathbf{x}_v^{(l)} = \sigma(\mathsf{MLP}^{(l)}([\mathbf{x}_v^{(0)}; \mathbf{x}_v^{(l-1)}; [\mathbf{Y}]_v^{(l)}])).$

Acknowledgement

This work was supported by the NSF under grants 1815992, 1816003, and 1916376, the AFOSR award FA9550-22-1-0362 and by the Institute of Financial Services Analytics, sponsored by JP Morgan Chase & Co.

The manuscript is submitted to *IEEE Transactions on Neural Networks and Learning Systems* and the pre-print is available on TechRxiv, T-HyperGNNs: Hypergraph Neural Networks Via Tensor Representations.

University of Delaware, USA

Thank you! Any Questions?

Fuli Wang, Karelia Pena-Pena, Wei Qian, Gonzalo R.Arce T-HyperGNNs: Hypergraph Neural Networks Via Tensor Representations ▲ロト▲御ト▲臣ト▲臣ト 臣 のへで

University of Delaware, USA

Extra Slides - Why Not Matrix?

A hypergraph can be represented by the incidence matrix $\mathbf{B} \in \mathbb{R}^{|V(\mathbf{H})| imes |E(\mathbf{H})|}$.

For the example hypergraph \mathbf{H}_{2} ,

		e_1	e_2	e_3	e_4			Anne	Carl	Ed	Bob	Mike	Amy	Dan
	Anne	10	0	1	0 \		Anne	/ 1	0	0	1	0	1	0 \
	Carl	1	0	0	0		Carl	0	1	1	0	0	0	1
	Ed	1	0	0	1		Ed	0	1	2	0	0	0	2
$\mathbf{B} =$	Bob	0	0	1	0	A =	Bob	1	0	0	1	0	1	0
	Mike	0	1	0	0		Mike	0	0	0	0	1	1	1
	Amy	0	1	1	0		Amy	1	0	0	1	1	2	1
	Dan	$\backslash 1$	1	0	1/		Dan	$\setminus 0$	1	2	0	1	1	3 /

Projecting out the hyperedge dimension: Adjacency matrix $\mathbf{A} = \mathbf{B}\mathbf{B}^T$

 \implies Clique expansion

not a one-to-one mapping

Extra Slides - Transductive VS Inductive

	Transductive	Inductive
Training	$(\mathbf{H}, \mathbf{X}) \rightarrow \mathbf{Z}_{train}$	$(\mathbf{H}_{train}, \mathbf{X}_{train}) \rightarrow \mathbf{Z}_{train}$
Testing	$(\mathbf{H}, \mathbf{X}) \rightarrow \mathbf{Z}_{test}$	$(\mathbf{H}_{test}, \mathbf{X}_{test}) \rightarrow \mathbf{Z}_{test}$

Fuli Wang, Karelia Pena-Pena, Wei Qian, Gonzalo R.Arce T-HyperGNNs: Hypergraph Neural Networks Via Tensor Representations

T-Message Passing

Experiment

Extra Slides: Ablation Study for T-MPHN

Exam the effectiveness of

- Values of adjacency tensors
- Node interaction modeled by cross product

もくの 神 エルド・エット きょう

University of Delaware, USA

Fuli Wang, Karelia Pena-Pena, Wei Qian, Gonzalo R.Arce

T-HyperGNNs: Hypergraph Neural Networks Via Tensor Representations